
Vol. 8/1, May 2008 46

R Help Desk
How Can I Avoid This Loop or Make It Faster?

by Uwe Ligges and John Fox

Introduction

There are some circumstances in which optimized
and efficient code is desirable: in functions that are
frequently used, in functions that are made available
to the public (e.g., in a package), in simulations tak-
ing a considerable amount of time, etc. There are
other circumstances in which code should not be op-
timized with respect to speed — if the performance
is already satisfactory. For example, in order to save
a few seconds or minutes of CPU time, you do not
want to spend a few hours of programming, and you
do not want to break code or introduce bugs apply-
ing optimization patches to properly working code.

A principal rule is: Do not optimize unless you
really need optimized code! Some more thoughts
about this rule are given by Hyde (2006), for exam-
ple. A second rule in R is: When you write a func-
tion from scratch, do it the vectorized way initially.
If you do, then most of the time there will be no need
to optimize later on.

If you really need to optimize, measure the speed
of your code rather than guessing it. How to profile R
code in order to detect the bottlenecks is described in
Venables (2001), R Development Core Team (2008a),
and the help page ?Rprof. The CRAN packages
proftools (Tierney, 2007) and profr (Wickham, 2008)
provide sets of more extensive profiling tools.

The convenient function system.time() (used
later in this article) simply measures the time of
the command given as its argument.1 The returned
value consists of user time (CPU time R needs for
calculations), system time (time the system is using
for processing requests, e.g., for handling files), to-
tal time (how long it really took to process the com-
mand) and — depending on the operating system in
use — two further elements.

Readability and clarity of the code is another
topic in the area of optimized code that has to be con-
sidered, because readable code is more maintainable,
and users (as well as the author) can easily see what
is going on in a particular piece of code.

In the next section, we focus on vectorization to
optimize code both for speed and for readability. We
describe the use of the family of *apply functions,
which enable us to write condensed but clear code.
Some of those functions can even make the code per-
form faster. How to avoid mistakes when writing
loops and how to measure the speed of code is de-
scribed in a subsequent section.

Vectorization!

R is an interpreted language, i.e., code is parsed and
evaluated at runtime. Therefore there is a speed is-
sue which can be addressed by writing vectorized
code (which is executed vector-wise) rather than us-
ing loops, if the problem can be vectorized. Loops
are not necessarily bad, however, if they are used in
the right way — and if some basic rules are heeded:
see the section below on loops.

Many vector-wise operations are obvious.
Nobody would want to replace the common
component-wise operators for vectors or matrices
(such as +, -, *, . . .), matrix multiplication (%*%),
and extremely handy vectorized functions such as
crossprod() and outer() by loops. Note that there
are also very efficient functions available for calculat-
ing sums and means for certain dimensions in arrays
or matrices: rowSums(), colSums(), rowMeans(), and
colMeans().

If vectorization is not as obvious as in the cases
mentioned above, the functions in the ‘apply’ fam-
ily, named [s,l,m,t]apply, are provided to apply
another function to the elements/dimensions of ob-
jects. These ‘apply’ functions provide a compact syn-
tax for sometimes rather complex tasks that is more
readable and faster than poorly written loops.

Matrices and arrays: apply()

The function apply() is used to work vector-wise on
matrices or arrays. Appropriate functions can be ap-
plied to the columns or rows of a matrix or array
without explicitly writing code for a loop. Before
reading further in this article, type ?apply and read
the whole help page, particularly the sections ‘Us-
age’, ‘Arguments’, and ‘Examples’.

As an example, let us construct a 5 × 4 matrix
X from some random numbers (following a normal
distribution with µ = 0,σ = 1) and apply the func-
tion max() column-wise to X. The result will be a vec-
tor of the maxima of the columns:

R> (X <- matrix(rnorm(20), nrow = 5, ncol = 4))

R> apply(X, 2, max)

Dataframes, lists and vectors: lapply() and
sapply()

Using the function lapply() (l because the value re-
turned is a list), another appropriate function can be
quickly applied element-wise to other objects, for ex-
ample, dataframes, lists, or simply vectors. The re-
sulting list has as many elements as the original ob-
ject to which the function is applied.

1 Timings in this article have been measured on the following platform: AMD Athlon 64 X2 Dual Core 3800+ (2 GHz), 2 Gb RAM,
Windows XP Professional SP2 (32-bit), using an optimized ‘Rblas.dll’ linked against ATLAS as available from CRAN.

R News ISSN 1609-3631

Vol. 8/1, May 2008 47

Analogously, the function sapply() (s for
simplify) works like lapply() with the exception
that it tries to simplify the value it returns. This
means, for example, that if the resulting object is a
list containing just vectors of length one, the result
simplifies to a vector (or a matrix, if the list contains
vectors of equal lengths). If sapply() cannot sim-
plify the result, it returns the same list as lapply().

A frequently used R idiom: Suppose that you
want to extract the i-th columns of several matrices
that are contained in a list L. To set up an example,
we construct a list L containing two matrices A and B:

R> A <- matrix(1:4, 2, 2)

R> B <- matrix(5:10, 2, 3)

R> (L <- list(A, B))

[[1]]

[,1] [,2]

[1,] 1 3

[2,] 2 4

[[2]]

[,1] [,2] [,3]

[1,] 5 7 9

[2,] 6 8 10

The next call can be read as follows: ‘Apply the func-
tion [() to all elements of L as the first argument,
omit the second argument, and specify 2 as the third
argument. Finally return the result in the form of a
list.’ The command returns the second columns of
both matrices in the form of a list:

R> lapply(L, "[", , 2)

[[1]]

[1] 3 4

[[2]]

[1] 7 8

The same result can be achieved by specifying an
anonymous function, as in:

R> sapply(L, function(x) x[, 2])

[,1] [,2]

[1,] 3 7

[2,] 4 8

where the elements of L are passed separately as x
in the argument of the anonymous function given
as the second argument in the lapply() call. Be-
cause all matrices in L contain equal numbers of
rows, the call returns a matrix consisting of the sec-
ond columns of all the matrices in L.

Vectorization via mapply() and Vectorize()

The mapply() function (m for multivariate) can si-
multaneously vectorize several arguments to a func-
tion that does not normally take vector arguments.
Consider the integrate() function, which approx-
imates definite integrals by adaptive quadrature,
and which is designed to compute a single inte-
gral. The following command, for example, inte-
grates the standard-normal density function from
−1.96 to 1.96:

R> integrate(dnorm, lower=-1.96, upper=1.96)

0.9500042 with absolute error < 1.0e-11

integrate() returns an object, the first element of
which, named "value", contains the value of the in-
tegral. This is an artificial example because normal
integrals can be calculated more directly with the
vectorized pnorm() function:

> pnorm(1.96) - pnorm(-1.96)

[1] 0.9500042

mapply() permits us to compute several normal
integrals simultaneously:

R> (lo <- c(-Inf, -3:3))

[1] -Inf -3 -2 -1 0 1 2 3

R> (hi <- c(-3:3, Inf))

[1] -3 -2 -1 0 1 2 3 Inf

R> (P <- mapply(function(lo, hi)

+ integrate(dnorm, lo, hi)$value, lo, hi))

[1] 0.001349899 0.021400234 0.135905122

[4] 0.341344746 0.341344746 0.135905122

[7] 0.021400234 0.001349899

R> sum(P)

[1] 1

vectorize() takes a function as its initial argu-
ment and returns a vectorized version of the func-
tion. For example, to vectorize integrate():

R> Integrate <- Vectorize(

+ function(fn, lower, upper)

+ integrate(fn, lower, upper)$value,

+ vectorize.args=c("lower", "upper")

+)

Then

R> Integrate(dnorm, lower=lo, upper=hi)

produces the same result as the call to mapply()
above.

Optimized BLAS for vectorized code

If vector and matrix operations (such as multiplica-
tion, inversion, decomposition) are applied to very
large matrices and vectors, optimized BLAS (Basic
Linear Algebra Subprograms) libraries can be used
in order to increase the speed of execution dra-
matically, because such libraries make use of the
specific architecture of the CPU (optimally using
caches, pipelines, internal commands and units of a
CPU). A well known optimized BLAS is ATLAS (Au-
tomatically Tuned Linear Algebra Software, http:
//math-atlas.sourceforge.net/, Whaley and Pe-
titet, 2005). How to link R against ATLAS, for ex-
ample, is discussed in R Development Core Team
(2008b).

Windows users can simply obtain precompiled
binary versions of the file ‘Rblas.dll’, linked against
ATLAS for various CPUs, from the directory

R News ISSN 1609-3631

Vol. 8/1, May 2008 48

‘/bin/windows/contrib/ATLAS/’ on their favourite
CRAN mirror. All that is necessary is to replace the
standard file ‘Rblas.dll’ in the ‘bin’ folder of the R in-
stallation with the file downloaded from CRAN. In
particular, it is not necessary to recompile R to use
the optimized ‘Rblas.dll’.

Loops!

Many comments about R state that using loops is a
particularly bad idea. This is not necessarily true. In
certain cases, it is difficult to write vectorized code,
or vectorized code may consume a huge amount of
memory. Also note that it is in many instances much
better to solve a problem with a loop than to use re-
cursive function calls.

Some rules for writing loops should be heeded,
however:

Initialize new objects to full length before the loop,
rather than increasing their size within the loop.

If an element is to be assigned into an object in each
iteration of a loop, and if the final length of that ob-
ject is known before the loop starts, then the object
should be initialized to full length prior to the loop.
Otherwise, memory has to be allocated and data has
to be copied in each iteration of the loop, which can
take a considerable amount of time.

To initialize objects we can use functions such as
• logical(), integer(), numeric(), complex(),

and character() for vectors of different
modes, as well as the more general function
vector();

• matrix() and array().
Consider the following example. We write three

functions, time1(), time2(), and time3(), each as-
signing values element-wise into an object: For i =
1, . . . , n, the value i2 will be written into the i-th ele-
ment of vector a. In function time1(), a will not be
initialized to full length (very bad practice, but we
see it repeatedly: a <- NULL):

R> time1 <- function(n){

+ a <- NULL

+ for(i in 1:n) a <- c(a, i^2)

+ a

+ }

R> system.time(time1(30000))

user system elapsed

5.11 0.01 5.13

In function time2(), a will be initialized to full
length [a <- numeric(n)]:

R> time2 <- function(n){

+ a <- numeric(n)

+ for(i in 1:n) a[i] <- i^2

+ a

+ }

R> system.time(time2(30000))

user system elapsed

0.22 0.00 0.22

In function time3(), a will be created by a vector-
wise operation without a loop.

R> time3 <- function(n){

+ a <- (1:n)^2

+ a

+ }

R> system.time(time3(30000))

user system elapsed

0 0 0

What we see is that
• it makes sense to measure and to think about

speed;
• functions of similar length of code and with the

same results can vary in speed — drastically;
• the fastest way is to use a vectorized approach

[as in time3()]; and
• if a vectorized approach does not work, re-

member to initialize objects to full length as in
time2(), which was in our example more than
20 times faster than the approach in time1().

It is always advisable to initialize objects to the
right length, if possible. The relative advantage of
doing so, however, depends on how much computa-
tional time is spent in each loop iteration. We invite
readers to try the following code (which pertains to
an example that we develop below):

R> system.time({

+ matrices <- vector(mode="list", length=10000)

+ for (i in 1:10000)

+ matrices[[i]] <-

+ matrix(rnorm(10000), 100, 100)

+ })

R> system.time({

+ matrices <- list()

+ for (i in 1:10000)

+ matrices[[i]] <-

+ matrix(rnorm(10000), 100, 100)

+ })

Notice, however, that if you deliberately build up the
object as you go along, it will slow things down a
great deal, as the entire object will be copied at every
step. Compare both of the above with the following:

R> system.time({

+ matrices <- list()

+ for (i in 1:1000)

+ matrices <- c(matrices,

+ list(matrix(rnorm(10000), 100, 100)))

+ })

Do not do things in a loop that can be done outside
the loop.

It does not make sense, for example, to check for the
validity of objects within a loop if checking can be
applied outside, perhaps even vectorized.

R News ISSN 1609-3631

Vol. 8/1, May 2008 49

It also does not make sense to apply the same
calculations several times, particularly not n times
within a loop, if they just have to be performed one
time.

Consider the following example where we want
to apply a function [here sin()] to i = 1, . . . , n and
multiply the results by 2π . Let us imagine that this
function cannot work on vectors [although sin()
does work on vectors, of course!], so that we need
to use a loop:

R> time4 <- function(n){

+ a <- numeric(n)

+ for(i in 1:n)

+ a[i] <- 2 * pi * sin(i)

+ a

+ }

R> system.time(time4(100000))

user system elapsed

0.75 0.00 0.75

R> time5 <- function(n){

+ a <- numeric(n)

+ for(i in 1:n)

+ a[i] <- sin(i)

+ 2 * pi * a

+ }

R> system.time(time5(100000))

user system elapsed

0.50 0.00 0.50

Again, we can reduce the amount of CPU time by
heeding some simple rules. One of the reasons for
the performance gain is that 2*pi can be calculated
just once [as in time5()]; there is no need to calculate
it n = 100000 times [as in the example in time4()].

Do not avoid loops simply for the sake of avoiding
loops.

Some time ago, a question was posted to the R-help
email list asking how to sum a large number of ma-
trices in a list. To simulate this situation, we create a
list of 10000 100 × 100 matrices containing random-
normal numbers:

R> matrices <- vector(mode="list", length=10000)

R> for (i in seq_along(matrices))

+ matrices[[i]] <-

+ matrix(rnorm(10000), 100, 100)

One suggestion was to use a loop to sum the
matrices, as follows, producing, we claim, simple,
straightforward code:

R> system.time({

+ S <- matrix(0, 100, 100)

+ for (M in matrices)

+ S <- S + M

+ })

user system elapsed

1.22 0.08 1.30

In response, someone else suggested the follow-
ing ‘cleverer’ solution, which avoids the loop:

R> system.time(S <- apply(array(unlist(matrices),

+ dim = c(100, 100, 10000)), 1:2, sum))

Error: cannot allocate vector of size 762.9 Mb

Not only does this solution fail for a problem of this
magnitude on the system on which we tried it (a 32-
bit system, hence limited to 2Gb for the process), but
it is slower on smaller problems. We invite the reader
to redo this problem with 10000 10× 10 matrices, for
example.

A final note on this problem:

R> S <- rowSums(array(unlist(matrices),

+ dim = c(10, 10, 10000)), dims = 2)

is approximately as fast as the loop for the smaller
version of the problem but fails on the larger one.

The lesson: Avoid loops to produce clearer and
possibly more efficient code, not simply to avoid
loops.

Summary

To answer the frequently asked question, ‘How can I
avoid this loop or make it faster?’: Try to use simple
vectorized operations; use the family of apply func-
tions if appropriate; initialize objects to full length
when using loops; and do not repeat calculations
many times if performing them just once is sufficient.

Measure execution time before making changes
to code, and only make changes if the efficiency gain
really matters. It is better to have readable code that
is free of bugs than to waste hours optimizing code
to gain a fraction of a second. Sometimes, in fact, a
loop will provide a clear and efficient solution to a
problem (considering both time and memory use).

Acknowledgment

We would like to thank Bill Venables for his many
helpful suggestions.

Bibliography

R. Hyde. The fallacy of premature optimization.
Ubiquity, 7(24), 2006. URL http://www.acm.org/
ubiquity.

R Development Core Team. Writing R Extensions.
R Foundation for Statistical Computing, Vienna,
Austria, 2008a. URL http://www.R-project.org.

R Development Core Team. R Installation and Ad-
ministration. R Foundation for Statistical Comput-
ing, Vienna, Austria, 2008b. URL http://www.
R-project.org.

L. Tierney. proftools: Profile Output Processing Tools for
R, 2007. R package version 0.0-2.

R News ISSN 1609-3631

