Nous connaissons tous une boulangerie, ou un salon de coiffure, qui a un jeu de mots dans son nom (“L’Hair du temps” ?), mais est-ce vraiment si répandu ? Essayons de répondre à cette question. Il y a plusieurs manières d’aborder ce problème : utiliser une approche de type apprentissage (mais il n’est jamais simple de faire comprendre l’humour à un ordinateur, et nous discuterons de cela plus tard), ou une approche de type sondage (ce qui sera fait dans un premier temps, dans cet article).
L’idée derrière cette approche consiste à se dire que juger la totalité des noms des salons de coiffure serait assez long (il y en a plusieurs dizaines de milliers) et que l’on va donc seulement s’intéresser à un petit échantillon (qui ne sera pas “représentatif” !) sur lequel on fera le travail de juger si le nom correspond à un jeu de mots ou pas.
Quelques considérations pratiques tout d’abord : nous avons un jeu de données composé de 30 083 entreprises françaises dont l’activité principale est dans le domaine du 9602A, ce qui dans le monde merveilleux des nomenclatures de la statistique publique, signifie que ce sont des entreprises dans le domaine de la coiffure, donc des salons de coiffure. On va également considérer qu’une taille raisonnable pour le travail de détection des jeux de mots est de prendre n = 200.
Première tentative
Nous allons donc extraire un échantillon de 200 SIREN de notre base, en utilisant un sondage aléatoire simple pour les choisir. Qu’entend-on par sondage aléatoire simple ? Comme son nom l’indique, il s’agit d’une technique basique de sondage qui repose sur deux postulats : on peut sélectionner tout le monde avec la même chance, et on veut aboutir à une taille fixe. Une représentation possible de ce type de sondage consiste à imaginer une urne avec les 30 083 boules qu’on mélange, puis on extrait une à une des boules jusqu’à en avoir le nombre souhaité, ici 200. Ce type de sondage est facile à mettre en pratique ; et il est facile d’utiliser les résultats obtenus pour avoir une estimation sur la population totale, et même une idée de la précision de cette estimation. On peut se référer au cours suivant pour une présentation plus détaillée.
Nous avons donc suivi ce plan de sondage, et nous avons un échantillon de 200 noms de salons de coiffure. Il reste maintenant à analyser les résultats pour détecter les jeux de mots : cette phase est forcément subjective, mais j’ai essayé ici de prendre la définition la plus large possible de jeu de mots, c’est à dire à chaque fois qu’il peut y avoir un double sens ou un jeu sur la prononciation de mots. Regardons plutôt quelques exemples trouvés dans l’échantillon :
Atmosp’hair, Posi’if, Aux mains d’argent, L’art de Pl’Hair, Diminu Tif, FauTif’Hair…
J’arrive au total à 13 jeux de mots, ce qui nous donne un pourcentage de jeux de mots de 6,5% parmi les salons de coiffure. L’utilisation d’un sondage aléatoire simple permet de garantir que cette estimation est sans biais (c’est un estimateur d’Horvitz-Thompson (en) du ratio), c’est à dire que, en moyennant sur tous les échantillons que l’on peut obtenir, on obtient la vraie proportion sur la population totale des salons de coiffure. Cela signifie en particulier que l’estimation que nous avons est fiable.
Cependant, cela ne signifie pas qu’elle est précise ! Prenons un exemple simple. On a deux individus A et B, avec une valeur de 0 pour A et de 100 pour B, et que l’on veut estimer la moyenne des valeurs dans la population, qui vaut 50. Lorsque l’on réalise un sondage aléatoire simple d’un individu parmi les deux, nous allons avoir la moitié du temps A et donc une estimation de 0, et la moitié du temps B et une estimation de 100. Cela donne bien 50 en moyenne : pourtant dans une réalité où l’on ne peut pas répéter le tirage des échantillons, on aurait juste l’observation de B (par exemple), et donc un estimateur de 100. Cette estimation est très imprécise : cela vient de la faible taille de l’échantillon (1 n’est pas suffisant), et de la très grande hétérogénéité de la population (si A avait une valeur de 1 et B de 2, on serait plus proche de la vérité). On peut aussi voir, en anglais, l’exemple des éléphants de Basu (en), bien connu des étudiants en théorie des Sondages.
Il existe une formule permettant de calculer la variance de l’estimation. On peut se référer par exemple aux slides 60 et suivantes de cette présentation. Globalement, dans le cas d’une proportion, la variance vaut à peu près :
Variance = Proportion * (100% – Proportion) / Taille de l’échantillon
À partir de ce résultat, on peut calculer un intervalle de confiance pour la vraie valeur de la proportion. Il suffit d’enlever et d’ajouter 1,96 fois la racine carrée de la variance. L’intervalle obtenu donne un ensemble de valeurs pour lesquelles l’observation qu’on a, c’est à dire la valeur obtenue sur l’échantillon, n’est pas trop improbable ; on considère ainsi qu’il est possible moins de 5 fois sur 100 pour une vraie valeur hors de cet intervalle d’obtenir un tel résultat.
L’application de ces méthodes ici donne l’intervalle de confiance suivant : [3.1% ; 9.9%]. Il est assez large, car d’une part la taille de l’échantillon est assez faible, et d’autre part la proportion estimée est faible, ce qui a tendance à réduire la précision des estimations : un caractère rare dans une population est difficile à détecter, et n’apparaît pas si souvent dans l’échantillon, donc l’information collectée reste assez faible.
Adaptons le sondage
Même s’il est possible d’être assez déçu par le résultat obtenu à l’aide de ce premier échantillon, il ne faut pas désespérer. En effet, il est toujours possible d’améliorer un plan de sondage une fois que l’on a collecté un peu plus d’informations. Ici, il est possible de faire une remarque générale sur les jeux de mots trouvés : la plupart d’entre eux contiennent soit le mot “Hair”, soit le mot “Tif”. Il est fort probable que l’on trouve plus de jeux de mots dans les salons dont le nom contient un des deux mots que dans la population générale. Nous allons utiliser cette nouvelle information pour réaliser un sondage stratifié (voir ce cours pour plus d’informations).
Pour reprendre l’analyse développée dans la partie précédente, avec une urne remplie de 30 083 boules, il va s’agir ici de séparer a priori, sur un critère connu (qui sera ici la présence ou non du mot “Tif” ou “Hair” dans le nom) les boules entre deux urnes, pour ensuite en tirer un certain nombre dans la première urne puis, indépendamment, un certain nombre (qui peut être différent du premier) dans la seconde urne.
Il ne reste qu’à séparer les 200 salons de coiffure entre les deux catégories, dites strates : la strate 1, qui regroupe les 2 603 salons de coiffure avec “Hair” ou “Tif”, dans laquelle on suppose qu’il y a environ la moitié de jeux de mots, et la strate 2 des autres salons de coiffure, dans laquelle on va supposer qu’il y a 1% de jeux de mots. Ces suppositions permettent de calculer des allocations, c’est à dire le nombre d’unités à tirer dans chaque strate, en utilisant la technique dite de l’allocation de Neyman (slide 61 de cette présentation). Cette allocation, classique en sondages, vise à maximiser la précision de l’estimateur obtenu à la fin, en prenant plus d’individus dans les strates avec une forte variance, ce qui est ici le cas de la strate 1 ; en effet, il y aura à peu près autant de jeux de mots que de non jeux de mots, alors que dans la strate 2 ce sera principalement des noms sans jeu de mots, donc assez peu variés.
Le résultat obtenu ici consiste à tirer 141 salons de coiffure de type 1 et 59 salons de coiffure de type 2. On réalise alors un tel tirage. Les résultats obtenus sont de 68 jeux de mots dans la première strate, et de 1 jeu de mots dans la seconde : “C’est dans l’ère”, assez proche du thème classique de Tif et Hair, mais avec une autre graphie !
Ici, il n’est évidemment pas possible d’extrapoler le résultat à la population totale en disant que la proportion de jeux de mots est de 68+1 sur 200, soit 34.5%. Il faut pondérer les résultats obtenus par la part que représente chacune des strates :
Estimation de la proportion = % de salons dans la strate 1 * proportion de jeux de mots dans la strate 1 + % de salons dans la strate 2 * proportion de jeux de mots dans la strate 2
ce qui donne ici 2603/30083*68/141 + 27480/30083*1/59 = 5,7%. On est bien dans l’intervalle de confiance obtenu tout à l’heure, ce qui est plutôt encourageant. Mais quelle est la précision de ce nouvel estimateur ? Pour cela, on utilise le même type de formule de calcul de variance pour chacune des strates :
Variance_Strate = Proportion_Strate * (100% – Proportion_Strate) / Taille de l’échantillon_Strate
puis on combine ces résultats pour avoir la variance de l’estimation :
Variance = (Part strate 1)² * Variance_Strate_1 + (Part strate 2)² * Variance_Strate_2
et enfin, on construit l’intervalle de confiance de la même façon que précédemment. Nous obtenons ici [4,1% ; 7,3%] qui est plus resserré que celui obtenu au début : nous avons bien amélioré la précision de notre estimation !
Conclusion
Ainsi, en utilisant un sondage intelligent, basé sur l’étude de certaines caractéristiques des jeux de mots dans les salons pour la stratification, nous arrivons au résultat que parmi les 30 083 salons de coiffure, il y en a environ 1 700 dont le nom comporte un jeu de mots, plus ou moins 500, soit très probablement entre 1 200 et 2 200.