Marges d’erreurs, approche modèle et sondages

Si cette élection présidentielle aura permis quelque chose, c’est bien d’avoir des discussions intéressantes sur les sondages ! Cette course à quatre est inédite dans l’histoire de la Vème République, et avec les grosses surprises de l’actualité récente (Trump et Brexit), il est normal de s’interroger sur l’incertitude réelle contenue dans ces données de sondages. Je propose donc de parler aujourd’hui des “marges d’erreurs” (dits aussi “intervalles de confiance à 95%”) qui ont pour but de quantifier cette incertitude. Je proposerai aussi une idée pour estimer une marge d’erreur prenant en compte à la fois les sondages (“le plan”) et l’évolution du paysage politique (“le modèle”).

Les “marges d’erreur” légales

Commençons par le début : aujourd’hui, on utilise une formule simple pour estimer les marges d’erreur d’un sondage : on prend le chiffre estimé et on effectue +/- deux fois l’erreur-type du sondage aléatoire simple de même taille. Malheureusement, ce mode de calcul ne repose sur aucun socle mathématique. La méthode utilisée par les instituts français, le sondage par quotas est en réalité très éloigné d’un sondage à probabilités égales, et les marges d’erreurs calculées ainsi ne correspondent pas à grand chose. C’est embêtant pour deux raisons qui peuvent sembler contradictoire :
– l’erreur aléatoire du sondage par quotas est probablement plus faible que celle utilisée pour calculer les marges (ce qui a amené des débats sur le “herding”)
– l’erreur totale est sans nul doute plus forte, car elle contient d’autres termes en plus de l’aléatoire (“vote caché”, profils difficiles à joindre, formulation des questions non neutres, etc.)

Le plan et le modèle

En plus de ces erreurs de mesure, on comprend bien que l’intention de vote sous-jacente des électeurs peut être elle-même variable ! Pour comprendre mieux ce dont on est en train de parler, on peut utiliser la formalisation suivante, empruntée à Binder et Roberts et illustrer avec le sondage politique :

Chaque observation à un instant t des intentions de vote consiste en un sondage en deux phases :

  • 1ère phase (modèle) : les intentions de vote des français varient en fonction des événements et du temps. Ce phénomène (supposé aléatoire) produit une population (ou “super-population”) de taille N = 47 millions, le nombre d’inscrits sur les listes électorales.
  • 2ème phase (plan) : les sondeurs sélectionnent n personnes de la population (typiquement n = 1000) et mesurent les intentions de vote à l’instant t, avec une certaine erreur de mesure.
    Comme le notait récemment Freakonometrics, il est difficile de vraiment séparer les deux phénomènes, et ne prendre en compte que l’erreur d’échantillonnage comme c’est fait aujourd’hui est très peu satisfaisant.
Approche en deux phases modèle / plan selon Binder – Roberts

Notez que l’avantage de la formalisation en deux phases choisie ici est que l’on a :

Erreur totale = Erreur modèle + Erreur de sondage

Une idée simple pour estimer ces marges

Pour le deuxième terme, faute de mieux, on va conserver l’erreur de sondage telle qu’elle est calculée aujourd’hui (avec la formule du sondage aléatoire simple) : elle sur-estime l’erreur aléatoire mais ça n’est pas plus mal car cela permet de prendre en compte au moins en partie l’erreur de mesure (voir ce post qui en parle de façon plus détaillée)

Le premier terme est le plus intéressant ! Une idée très simple pour prendre en compte le modèle et l’erreur de sondage : mettre à profit les deuxièmes choix des électeurs, information que l’on retrouve dans un certain nombre d’enquêtes cette année (par exemple chez Ipsos, en page 11 de ce document). L’idée est que si des événements se produisent qui peuvent faire évoluer les intentions de vote, les électeurs auront tendance à se reporter sur leur deuxième choix plutôt que de changer totalement d’avis. Petite remarque : il faut bien intégrer dans ces choix potentiels la possibilité de l’abstention ou du vote blanc, qui ont bien entendu une influence sur la précision des estimations.

Cette idée permettrait d’intégrer la composante modèle à peu de frais ! Reste bien sûr la question de la quantification, mais je me dis que des règles naïves peuvent suffire à obtenir des estimations d’erreur de bonne qualité. Je serais très curieux de savoir si une définition pareille permet de construire des intervalles de confiance avec de bonnes propriétés de couverture. Je crains cependant que les données de deuxième choix des candidats soient peu disponibles pour les présidentielles précédentes.

Le modèle de “Too close to call” prend justement en compte ces information, et obtient des marges d’erreur très intéressantes :

Distribution de probabilité des scores – modèle Too close to call

Ces marges reflètent en particulier la relative “sûreté” du score de Marine Le Pen, qui semble posséder une base fidèle ; le score d’Emmanuel Macron semble lui beaucoup plus incertain.

Les sondeurs se copient, vraiment ? (le herding)

Un tweet de Nate Silver posté ce lundi semble avoir déchaîné les passions de nombreux observateurs :

Dans ce gazouillis, Nate Silver (célèbre analyste statistique américain, rédacteur en chef du site fivethirtyeight.com) remarque que les estimations des intentions de vote par les instituts de sondage français sont assez proches les unes des autres, et suggère que cela est dû au fait que les sondeurs se “copient” les uns les autres (afin de limiter le risque d’être le seul institut proposant un résultat très éloigné du score final).  Il nomme ceci le herding.

Un article publié dans The Economist hier lui emboîte le pas en s’intéressant notamment au cas de l’estimation du score de Marine Le Pen. Les autres tentent de montrer que la corrélation qu’on observe entre les différents résultats est improbable au sens statistique du terme, et en concluent qu’il y a nécessairement une intervention.

J’ai quelques doutes sur la validité de cette analyse.

Erreur en sondages

L’erreur totale des sondages est composée de deux termes :

Erreur totale de mesure = Erreur d’échantillonnage + Erreur d’observation

  • L’erreur d’échantillonnage vient du fait qu’on ne demande pas leur intention de vote à tous les français mais à seulement un petit nombre d’entre eux, typiquement entre 1000 et 2000 (cela a un coût, que l’on paye en précision). C’est l’erreur aléatoire. On suppose généralement que les tirages sont indépendants et, faute de mieux, on estime cette erreur en utilisant la variance du sondage aléatoire simple de même taille d’échantillon. Rappelons que procéder ainsi ne repose sur aucune règle mathématique rigoureuse !
  • L’erreur d’observation regroupe beaucoup de choses diverses qui ne sont pas vraiment quantifiables, mais qui ont une importance. Par exemple, l’influence de la formulation des questions, la sous-déclaration de votes “honteux”, etc. Notons qu’il y a de fortes chances pour que cette erreur d’observation soit très corrélée entre les instituts de sondage : si vous ne souhaitez pas dévoiler votre vote à un sondeur, je doute que cela change suivant que ledit sondeur travaille pour l’Ifop ou la Sofres.

Ainsi, l’étonnement des auteurs concerne l’erreur aléatoire d’échantillonnage – et c’est bien celle qui est considérée dans leur “test statistique”.

La spécificité française : quotas et redressement

Pour un sondage américain typique, la réflexion fonctionne très bien car l’erreur d’échantillonnage estimée en utilisant la formule du sondage aléatoire simple est en général une sous-estimation de l’erreur d’échantillonnage réelle. L’article original de Nate Silver sur le herding est convainquant à cet égard.

Pour un sondage politique français, c’est beaucoup plus compliqué car les méthodes utilisées (notamment les quotas et l’utilisation intensive de redressements) sont très différentes des méthodes américaines ! La méthode des quotas et le redressement permettent, lorsque les variables mises en jeu (âge, géographie, catégorie socio-professionnelle et vote passé principalement) expliquent correctement le phénomène mesuré (les intentions de vote pour dimanche), de réduire sensiblement l’erreur d’échantillonnage.

De plus, j’ai “l’intuition” que le mode de sélection par quotas et le redressement (qui ne sont en fait pas aléatoire) peuvent eux-mêmes conduire à une corrélation des erreurs d’échantillonnage entre les instituts. J’espère vraiment avoir l’occasion dans des travaux futurs de proposer un modèle pour pouvoir tester cette idée ! La littérature sur les sondages par quotas est très peu développée et on ne peut que le regretter.

Ces deux arguments montrent que la variabilité des sondages “attendue” par les auteurs de l’article de The Economist est peut-être bien plus importante que leur variabilité réelle. Leur “probabilité” estimée que les sondages n’aient pas subi d’intervention est donc à mon avis très largement surestimée, et leur conclusion me semble hâtive.

Autrement dit à propos de leur méthodologie : le fait que peu de sondages sortent des marges d’erreur ne montre pas nécessairement que les sondeurs “trichent”, mais tout simplement… que leurs marges d’erreur sont mal calculées !

Reste… le risque !

Agrégé des estimations d’intentions de vote – Will Jennings and Chris Wlezien, The Economist

Il reste que cette corrélation entre les résultats est à double tranchant. Rien ne garantit que l’erreur totale des sondages français est inférieure à l’erreur totale des sondages américains. En résumé, la méthode française est sans doute plus risquée : il y a des chances que les résultats soient plus précis qu’avec la méthode “américaine”, mais en contrepartie, s’il y a une erreur, tous les sondages seront éloignés de la réalité à la fois ! Etant donné que la course à quatre de cette année est inédite dans l’histoire de la Vème République, rien ne garantit que l’on n’ait pas une grosse surprise dimanche à 20h !

A bientôt pour un post sur les marges d’erreur en sondages politique !

Illustrations : graphiques de l’article de The Economist, par Will Jennings et Chris Wlezien. Je ne possède pas les droits de ces images.