Analyse de pronostics pour le Mondial 2018

On est les champions ! Si nous n’avons pas eu le temps de faire un modèle de prédiction pour cette coupe du monde de football 2018 (mais FiveThirtyEight en a fait un très sympa, voir ici), cela ne nous a pas empêché de faire un concours de pronostics entre collègues et ex-collègues statisticiens, sur le site Scorecast. Les résultats obtenus sont les suivants :

JoueurScore
Nic102
Cle100
Ron100
Lud96
Tho90
Lio88
Lis87
Pap86
Mau84
Yan78
Ant78
Lau75
Thi71
Arn56
Oli28
Mar7

Un autre système de points ?

Le système de points utilisé par Scorecast est le suivant : si on a le bon gagnant, on gagne un faible nombre de points ; si en plus du bon gagnant, on a bien prédit l’écart de buts, on gagne un peu plus de points ; et enfin, si on a le score exact, on gagne le nombre maximal de points. Ce nombre maximal de points augmente au fur et à mesure de la compétition : la finale vaut plus de points qu’un match de poules. Ce système ne tient pas compte de cotes préexistantes (comme le fait par exemple Mon petit prono), ou du fait que certains matchs sont bien prédits par tout le monde alors que pour d’autres seule une personne a bien trouvé, voire personne.

Je propose donc ici d’altérer légèrement l’attribution des points, de la façon suivante : on dispose d’un nombre de points équivalent pour chaque match d’une même manche (match de poule, de quart, etc.), qu’on répartit entre les joueurs qui ont bien prédit le score, avec un avantage pour ceux qui ont le bon écart de points ou le bon score exact. Le nombre de points à répartir augmente tout au long de la compétition, de sorte que les phases finales aient plus d’importance dans le classement final.

Pourquoi faire ça ? Pour favoriser les joueurs qui ont fait des paris plus originaux et potentiellement plus risqués, ou en tout cas qui étaient les seuls à avoir la bonne intuition. Voici les résultats :

JoueurScoreScore modifié
Mau84185
Lud96163
Nic102144
Tho90136
Ant78135
Cle100126
Ron100123
Lis87120
Lio88115
Pap86108
Yan78105
Lau75100
Thi7190
Arn5678
Oli2843
Mar710

On constate que le classement évolue sensiblement avec cette nouvelle méthode de points ! Mais peut-être que certains auraient fait d’autres paris si ces règles étaient décidées…

Choix des scores

Une des principales difficultés du pronostic est qu’il ne suffit pas de savoir (ou de penser savoir) qui va gagner le match, mais il faut aussi indiquer le score attendu. Regardons si les prédictions de l’ensemble des parieurs de notre ligue ont été pertinentes par rapport aux vrais scores ! Pour cela, on détermine pour chaque score le pourcentage des matchs qui ont abouti à ce résultat d’une part, et le pourcentage des paris faits avec ce score. On regarde ensuite la différence entre les pourcentages, qu’on va illustrer par la heatmap ci-dessous. Les cases vertes correspondent aux scores des matchs trop rarement prédits ; les cases rouges aux scores très souvent prédits mais qui n’arrivent que peu ou pas.

On constate que l’on a surestimé largement le nombre de 2-1, de 3-0 et de 4-0 (score qui n’est jamais arrivé lors de cette coupe du monde) ; ce sont d’ailleurs les seuls “gros” scores qui ont été surestimés dans les prédictions : tous les autres ont été sous-évalués. Cela peut laisser penser que les paris ont été faits avec une logique conservative et en évitant de tenter des scores absurdes, comme 7-0 pour l’Arabie Saoudite contre la Russie !

Analyse de données et classification

Enfin, une dernière utilisation possible de ce jeu de données est d’en faire l’analyse pour en extraire des classes de parieurs ayant un peu le même profil (ou en tout cas les mêmes réussites), et pour voir ce qui les sépare. Plusieurs méthodes sont possibles pour cela.

Commençons par un grand classique : la Classification Ascendante Hiérarchique (CAH pour les intimes), qui est une méthode qui part de groupes d’une personne, et qui, à chaque étape, regroupe deux groupes de telle façon à ce que l’inertie intra augmente au minimum. De façon moins barbare, cela veut dire qu’on regroupe les deux groupes qui se ressemblent le plus, étape par étape, jusqu’à arriver à la population totale. On représente souvent ce type de méthodes par un dendogramme, qui ressemble un peu à un arbre phylogénétique en biologie de l’évolution, et qui illustre la construction des classes, de bas en haut.

On remarque qu’il y a de nombreux binômes qui sont cohérents, et qui signalent des parieurs avec des profils comparables (par exemple, Mar et Oli, qui correspondent à deux joueurs ayant raté une bonne partie de la compétition, soit en arrêtant les paris, soit en arrivant en cours), et qu’il y a une séparation entre les quatre joueurs de gauche et les autres (eux-mêmes largement séparés entre les 3 les plus à gauche et les autres).

Une autre possibilité est d’utiliser l’Analyse en Composantes Principales, que nous avions déjà utilisé dans un contexte footballistique ici ou ici (en). La logique est ici de chercher à résumer une matrice avec beaucoup d’informations (pour chaque joueur, l’ensemble des points obtenus via ses paris pour chaque match) en un nombre minimal de dimensions, dits d’axes, qui suffisent pour avoir une bonne idée de la logique d’organisation du jeu de données.

Si l’on réalise cette méthode ici, voici ce que l’on obtient sur les premiers axes :

L’axe 1 est souvent victime de ce qu’on appelle l'”effet taille” : on entend par là le fait que les individus ayant de grandes valeurs de certaines variables en ont souvent aussi pour les autres variables, et symétriquement pour les individus qui ont des petites valeurs. En effet, on voit que la variable supplémentaire, le total de points obtenus (avec la méthode Scorecast), en bleu, est proche de l’axe 1. Cela veut dire que les individus à droite de l’axe ont tendance à avoir un score important, tandis que ceux à gauche n’ont pas très bien réussi leurs prédictions.

On constate également que les représentations sur les plans constitués des dimensions 1-2, et 2-3, ont tendance à rapprocher les individus que la classification effectuée plus haut associait en binôme. Cela montre une certaine cohérence, ce qui est toujours rassurant !

Plus dans le détail, on voit que les axes 2 et 3 semblent correspondre aux paris suivants, qui sont donc discriminants entre les différents joueurs :

  • Pour l’axe 2, avoir réussi son pari sur les matchs Pérou-Danemark, Mexique-Suède, Brésil-Suisse, Espagne-Russie et Argentine-Croatie
  • Pour l’axe 3, avoir réussi son pari sur les matchs Japon-Sénégal, Suisse-Costa Rica, Danemark-France ou encore Brésil-Mexique

Difficile de trouver une interprétation de ces axes…

[Sports] Fifa et analyse de données

Après un été chargé en sports, l’automne et la Ligue 1 reprennent peu à peu leurs droits. C’est l’occasion de détailler un sujet d’analyse de données élaboré pour un cours à l’ENSAE. Il s’agit d’analyser des données qualitatives (caractéristiques physiques, tactiques et aptitudes relatives à certains aspects techniques du jeu) décrivant les joueurs du championnat de France de football. Le but final est de déterminer “statistiquement” à quel poste faire jouer Mathieu Valbuena 🙂 On utilise le langage R et l’excellent package d’analyse de données FactoMineR.

Les données

Comme indiqué dans l’énoncé du TD, il n’est pas nécessaire de bien connaître le football pour pouvoir suivre cet article. Seule une notion de l’emplacement des joueurs sur le terrain en fonction de leur poste (correspondant à la colonne “position” du dataset) est souhaitable. Voici un petit schéma pour aider les moins avertis :

disposition_terrain

Les données sont issues du jeu vidéo Fifa 15 (les connaisseurs auront remarqué que les données datent donc d’il y a déjà deux saisons, il peut donc y avoir quelques différences avec les effectifs actuels !), qui donne de nombreuses statistiques pour chaque joueur, incluant une évaluation de leurs capacités. Les données de Fifa sont quantitatives (par exemple chaque capacité est notée sur 100) mais pour cet article on les a rendues catégorielles sur 4 positions : 1. Faible / 2. Moyen / 3. Fort / 4. Très fort. On verra l’intérêt d’avoir procédé ainsi un peu plus loin !

Préparation des données

Commençons par charger les données. Notez l’utilisation de l’option stringsAsFactors=TRUE (plus d’explications sur ce fameux paramètre stringsAsFactors ici). Eh oui, une fois n’est pas coutume, FactoMineR utilise des facteurs pour effectuer l’analyse de données !

> champFrance <- read.csv2("td3_donnees.csv", stringsAsFactors=TRUE)
> champFrance <- as.data.frame(apply(champFrance, 2, factor))

La deuxième ligne sert à transformer les colonnes de type int créés par read.csv2 en factors.

FactoMineR utilise le paramètre “row.names” des data.frame de R pour l’affichage sur les graphes. On va donc indiquer qu’il faut utiliser la colonne “nom” en tant que row.names pour faciliter la lecture :

> row.names(champFrance) <- champFrance$nom
> champFrance$nom <- NULL

Voilà à quoi ressemble désormais notre data.frame (seules les premières lignes sont affichées) :

> head(champFrance)
                      pied position championnat age taille general
Florian Thauvin     Gauche      MDR      Ligue1   1      3       4
Layvin Kurzawa      Gauche       AG      Ligue1   1      3       4
Anthony Martial      Droit       BU      Ligue1   1      3       4
Clinton N'Jie        Droit       BU      Ligue1   1      2       3
Marco Verratti       Droit       MC      Ligue1   1      1       4
Alexandre Lacazette  Droit       BU      Ligue1   2      2       4

Analyse des données

Nous avons affaire à un tableau de variables catégorielles : la méthode adaptée est l’Analyse des Correspondances Multiples, qui est implémentée dans FactoMineR par la méthode MCA. Pour le moment on exclut de l’analyse les variables “position”, “championnat” et “âge” (que l’on traite comme variables supplémentaires) :

> library(FactoMineR)
> acm <- MCA(champFrance, quali.sup=c(2,3,4))

Trois graphes apparaissent dans la sortie : la projection sur les deux premiers axes factoriels des catégories et des individus, ainsi que le graphe des variables. A ce stade, seul le second nous intéresse :

2_nuages_points_2
Projection des individus sur les deux premiers axes factoriels

Avant même d’essayer d’aller plus loin dans l’analyse, quelque chose doit nous sauter aux yeux : il y a clairement deux nuages de points ! Or nos méthodes d’analyse de données supposent que le nuage qu’on analyse est homogène. Il va donc falloir se restreindre à l’analyse de l’un des deux nuages que l’on observe sur ce graphe.

Pour identifier à quels individus le nuage de droite correspond, on peut utiliser les variables supplémentaires (points verts). On observe que la projection de la position goal (“G”) correspond bien au nuage. En regardant de plus près les noms des individus concernés, on confirme que ce sont tous des gardiens de but.

On va se concentrer pour le reste de l’article sur les joueurs de champ. On en profite également pour retirer les colonnes ne concernant que les capacités de gardien, qui ne sont pas importantes pour les joueurs de champ et ne peuvent que bruiter notre analyse :

> champFrance_nogoals <- champFrance[champFrance$position!="G",-c(31:35)]
> acm_nogoals <- MCA(champFrance_nogoals, quali.sup=c(2,3,4))

Et l’on vérifie bien dans la sortie graphique que l’on a un nuage de points homogène.

Interprétation

On commence par réduire notre analyse à un certain nombre d’axes factoriels. Ma méthode favorite est la “règle du coude” : sur le graphe des valeurs propres, on va observer un décrochement (le “coude”) suivi d’une décroissance régulière. On sélectionnera ensuite un nombre d’axes correspondant au nombre de valeurs propres précédant le décrochement :

> barplot(acm_nogoals$eig$eigenvalue)

 

barplot
Éboulis des valeurs propres

Ici, on peut choisir par exemple 3 axes (mais on pourrait justifier aussi de retenir 4 axes). Passons maintenant à l’interprétation, en commençant par les graphes des projections sur les deux premiers axes retenus pour l’étude.

> plot.MCA(acm_nogoals, invisible = c("ind","quali.sup"))
axes_1_2_modalites
Projection des modalités sur les axes factoriels 1 et 2 (cliquer pour agrandir)

On peut par exemple lire sur ce graphe le nom des modalités possédant les plus fortes coordonnées sur les axes 1 et 2 et commencer ainsi l’interprétation. Mais avec un tel de nombre de modalités, la lecture directe sur le graphe n’est pas si aisée. On peut également obtenir un résultat dans la sortie texte spécifique de FactoMineR, dimdesc (seule une partie de la sortie est donnée ici) :

> dimdesc(acm_nogoals)
$`Dim 1`$category
                         Estimate       p.value
finition_1            0.700971584 1.479410e-130
volees_1              0.732349045 8.416993e-125
tirs_lointains_1      0.776647500 4.137268e-111
tacle_glisse_3        0.591937236 1.575750e-106
effets_1              0.740271243  1.731238e-87
[...]
finition_4           -0.578170467  7.661923e-82
puissance_tir_4      -0.719591411  2.936483e-86
controle_balle_4     -0.874377431 5.088935e-104
dribbles_4           -0.820552850 1.795628e-117

Les modalités les plus caractéristiques de l’axe 1 sont, à droite, un niveau faible dans les capacités offensives (finition, volées, tirs lointains), et de l’autre un niveau très fort dans ces même capacités. L’interprétation naturelle est donc que l’axe 1 discrimine selon les capacités offensives (les meilleurs attaquants à gauche, les moins bons à droite). On procède de même pour l’axe 2, et on observe le même phénomène, mais avec les capacités défensives : en haut on trouvera les meilleurs défenseurs, et en bas les moins bons défenseurs.

Les variables supplémentaires peuvent aussi aider à l’interprétation, et vont confirmer notre interprétation, notamment la variable de position :

> plot.MCA(acm_nogoals, invisible = c("ind","var"))
var_sup_axes_1_2
Projection des variables supplémentaires sur les axes factoriels 1 et 2 (cliquer pour agrandir)

On trouve bien à gauche du graphe les les postes offensifs (BU, AIG, AID) et en haut les postes défensifs (DC, AD, AG).

Une conséquence de cette interprétation est que l’on risque de trouver les joueurs de meilleur niveau organisés le long de la seconde bissectrice, avec les meilleurs joueurs dans le quadrant en haut à gauche, et les plus faibles dans le quadrant en bas à droite. Il y a beaucoup de moyens de le vérifier, mais on va se contenter de regarder dans le graphe des modalités l’emplacement des observations de la variable “général”, qui résume le niveau d’un joueur. Comme on s’y attend, on trouve “général_4” dans en haut à gauche et “général_1” dans le quadrant en bas à droite. On peut observer aussi le placement des variables supplémentaires “Ligue 1” et “Ligue 2” pour s’en convaincre 🙂

A ce stade, il y a déjà plein de choses intéressantes à relever ! Parmi celles qui m’amusent le plus :

  • Les ailiers gauches semblent avoir un meilleur niveau que les ailiers droits (si un spécialiste du foot voulait bien m’en expliquer la raison ce serait top !)
  • L’âge n’est pas explicatif du niveau du joueur, sauf pour les plus jeunes qui ont un niveau plus faible
  • Les joueurs les plus âgés ont des rôles plus défensifs.

N’oublions pas de nous occuper de l’axe 3 :

> plot.MCA(acm_nogoals, invisible = c("ind","var"), axes=c(2,3))
axes_2_3
Modalités projetées sur les axes 2 et 3

Les modalités les plus caractéristiques de ce troisième axe sont les faiblesses techniques : les joueurs les moins techniques sont sur les extrémités de l’axe, et les joueurs les plus techniques au centre. On le confirme sur le graphe des variables supplémentaires : les buteurs et défenseurs centraux sont en effet moins réputés pour leurs capacités techniques, tandis que tous les postes de milieux se retrouvent au centre de l’axe :

sup_axes_2_3
Variables supplémentaires sur les axes 2 et 3 (cliquer pour agrandir)

C’est l’intérêt d’avoir rendu ces variables catégorielles. Si l’on avait conservé le caractère quantitatif des données originelles de Fifa et effectué une ACP, les projections de chaque caractéristique sur chaque axe auraient été ordonnées par niveau, contrairement à ce qui se passe sur l’axe 3. Et après tout, discriminer les joueurs suivant leur niveau technique ne reflète pas forcément toute la richesse du football : à certains postes, on a besoin de techniciens, mais à d’autres, on préférera des qualités physiques !

Mathieu Valbuena

On va maintenant ajouter les données d’un nouvel entrant dans le championnat de France : Mathieu Valbuna (oui je vous avais prévenu, les données commencent à dater un peu :p) et le comparer aux autres joueurs en utilisant notre analyse.

> columns_valbuena <- c("Droit","AID","Ligue1",3,1
 ,4,4,3,4,3,4,4,4,4,4,3,4,4,3,3,1,3,2,1,3,4,3,1,1,1)
> champFrance_nogoals["Mathieu Valbuena",] <- columns_valbuena

> acm_valbuena <- MCA(champFrance_nogoals, quali.sup=c(2,3,4), ind.sup=912)
> plot.MCA(acm_valbuena, invisible = c("var","ind"), col.quali.sup = "red", col.ind.sup="darkblue")
> plot.MCA(acm_valbuena, invisible = c("var","ind"), col.quali.sup = "red", col.ind.sup="darkblue", axes=c(2,3))

Les deux dernières lignes permettent de représenter Mathieu Valbuena sur les axes 1 et 2, puis 2 et 3 :

Axes factoriels 1 et 2 avec Mathieu Valbuena en point supplémentaire (cliquer pour agrandir)
Axes factoriels 1 et 2 avec Mathieu Valbuena en point supplémentaire (cliquer pour agrandir)
Axes factoriels 2 et 3 avec Mathieu Valbuena en point supplémentaire (cliquer pour agrandir)
Axes factoriels 2 et 3 avec Mathieu Valbuena en point supplémentaire (cliquer pour agrandir)

Résultat de notre analyse : Mathieu Valbuena a plutôt un profil offensif (gauche de l’axe 1), mais possède un bon niveau général (sa projection sur la deuxième bissectrice est assez élevée). Il possède également de bonnes aptitudes techniques (centre de l’axe 3). Enfin, ses qualités semblent plutôt bien convenir aux postes de milieu offensif (MOC) ou milieu gauche (MG). Avec quelques lignes de code, on peut trouver les joueurs du championnat dont le profil est le plus proche de celui de Valbuena :

> acm_valbuena_distance <- MCA(champFrance_nogoals[,-c(3,4)], quali.sup=c(2), ind.sup=912, ncp = 79)
> distancesValbuena <- as.data.frame(acm_valbuena_distance$ind$coord)
> distancesValbuena[912, ] <- acm_valbuena_distance$ind.sup$coord

> euclidianDistance <- function(x,y) {
 
 return( dist(rbind(x, y)) )
 
}

> distancesValbuena$distance_valbuena <- apply(distancesValbuena, 1, euclidianDistance, y=acm_valbuena_distance$ind.sup$coord)
> distancesValbuena <- distancesValbuena[order(distancesValbuena$distance_valbuena),]

# On regarde les profils des 5 individus les plus proches
> nomsProchesValbuena <- c("Mathieu Valbuena", row.names(distancesValbuena[2:6,]))

Et l’on obtient : Ladislas Douniama, Frédéric Sammaritano, Florian Thauvin, N’Golo Kanté et Wissam Ben Yedder.

Il y aurait plein d’autres choses à dire sur ce jeu de données mais je préfère arrêter là cet article déjà bien long 😉 Pour finir, gardez à l’esprit que cette analyse n’est pas vraiment sérieuse et sert surtout à présenter un exemple sympathique pour la découverte de FactoMineR et de l’ADD.