Marges d’erreurs, approche modèle et sondages

Si cette élection présidentielle aura permis quelque chose, c’est bien d’avoir des discussions intéressantes sur les sondages ! Cette course à quatre est inédite dans l’histoire de la Vème République, et avec les grosses surprises de l’actualité récente (Trump et Brexit), il est normal de s’interroger sur l’incertitude réelle contenue dans ces données de sondages. Je propose donc de parler aujourd’hui des “marges d’erreurs” (dits aussi “intervalles de confiance à 95%”) qui ont pour but de quantifier cette incertitude. Je proposerai aussi une idée pour estimer une marge d’erreur prenant en compte à la fois les sondages (“le plan”) et l’évolution du paysage politique (“le modèle”).

Les “marges d’erreur” légales

Commençons par le début : aujourd’hui, on utilise une formule simple pour estimer les marges d’erreur d’un sondage : on prend le chiffre estimé et on effectue +/- deux fois l’erreur-type du sondage aléatoire simple de même taille. Malheureusement, ce mode de calcul ne repose sur aucun socle mathématique. La méthode utilisée par les instituts français, le sondage par quotas est en réalité très éloigné d’un sondage à probabilités égales, et les marges d’erreurs calculées ainsi ne correspondent pas à grand chose. C’est embêtant pour deux raisons qui peuvent sembler contradictoire :
– l’erreur aléatoire du sondage par quotas est probablement plus faible que celle utilisée pour calculer les marges (ce qui a amené des débats sur le “herding”)
– l’erreur totale est sans nul doute plus forte, car elle contient d’autres termes en plus de l’aléatoire (“vote caché”, profils difficiles à joindre, formulation des questions non neutres, etc.)

Le plan et le modèle

En plus de ces erreurs de mesure, on comprend bien que l’intention de vote sous-jacente des électeurs peut être elle-même variable ! Pour comprendre mieux ce dont on est en train de parler, on peut utiliser la formalisation suivante, empruntée à Binder et Roberts et illustrer avec le sondage politique :

Chaque observation à un instant t des intentions de vote consiste en un sondage en deux phases :

  • 1ère phase (modèle) : les intentions de vote des français varient en fonction des événements et du temps. Ce phénomène (supposé aléatoire) produit une population (ou “super-population”) de taille N = 47 millions, le nombre d’inscrits sur les listes électorales.
  • 2ème phase (plan) : les sondeurs sélectionnent n personnes de la population (typiquement n = 1000) et mesurent les intentions de vote à l’instant t, avec une certaine erreur de mesure.
    Comme le notait récemment Freakonometrics, il est difficile de vraiment séparer les deux phénomènes, et ne prendre en compte que l’erreur d’échantillonnage comme c’est fait aujourd’hui est très peu satisfaisant.
Approche en deux phases modèle / plan selon Binder – Roberts

Notez que l’avantage de la formalisation en deux phases choisie ici est que l’on a :

Erreur totale = Erreur modèle + Erreur de sondage

Une idée simple pour estimer ces marges

Pour le deuxième terme, faute de mieux, on va conserver l’erreur de sondage telle qu’elle est calculée aujourd’hui (avec la formule du sondage aléatoire simple) : elle sur-estime l’erreur aléatoire mais ça n’est pas plus mal car cela permet de prendre en compte au moins en partie l’erreur de mesure (voir ce post qui en parle de façon plus détaillée)

Le premier terme est le plus intéressant ! Une idée très simple pour prendre en compte le modèle et l’erreur de sondage : mettre à profit les deuxièmes choix des électeurs, information que l’on retrouve dans un certain nombre d’enquêtes cette année (par exemple chez Ipsos, en page 11 de ce document). L’idée est que si des événements se produisent qui peuvent faire évoluer les intentions de vote, les électeurs auront tendance à se reporter sur leur deuxième choix plutôt que de changer totalement d’avis. Petite remarque : il faut bien intégrer dans ces choix potentiels la possibilité de l’abstention ou du vote blanc, qui ont bien entendu une influence sur la précision des estimations.

Cette idée permettrait d’intégrer la composante modèle à peu de frais ! Reste bien sûr la question de la quantification, mais je me dis que des règles naïves peuvent suffire à obtenir des estimations d’erreur de bonne qualité. Je serais très curieux de savoir si une définition pareille permet de construire des intervalles de confiance avec de bonnes propriétés de couverture. Je crains cependant que les données de deuxième choix des candidats soient peu disponibles pour les présidentielles précédentes.

Le modèle de “Too close to call” prend justement en compte ces information, et obtient des marges d’erreur très intéressantes :

Distribution de probabilité des scores – modèle Too close to call

Ces marges reflètent en particulier la relative “sûreté” du score de Marine Le Pen, qui semble posséder une base fidèle ; le score d’Emmanuel Macron semble lui beaucoup plus incertain.

Les sondeurs se copient, vraiment ? (le herding)

Un tweet de Nate Silver posté ce lundi semble avoir déchaîné les passions de nombreux observateurs :

Dans ce gazouillis, Nate Silver (célèbre analyste statistique américain, rédacteur en chef du site fivethirtyeight.com) remarque que les estimations des intentions de vote par les instituts de sondage français sont assez proches les unes des autres, et suggère que cela est dû au fait que les sondeurs se “copient” les uns les autres (afin de limiter le risque d’être le seul institut proposant un résultat très éloigné du score final).  Il nomme ceci le herding.

Un article publié dans The Economist hier lui emboîte le pas en s’intéressant notamment au cas de l’estimation du score de Marine Le Pen. Les autres tentent de montrer que la corrélation qu’on observe entre les différents résultats est improbable au sens statistique du terme, et en concluent qu’il y a nécessairement une intervention.

J’ai quelques doutes sur la validité de cette analyse.

Erreur en sondages

L’erreur totale des sondages est composée de deux termes :

Erreur totale de mesure = Erreur d’échantillonnage + Erreur d’observation

  • L’erreur d’échantillonnage vient du fait qu’on ne demande pas leur intention de vote à tous les français mais à seulement un petit nombre d’entre eux, typiquement entre 1000 et 2000 (cela a un coût, que l’on paye en précision). C’est l’erreur aléatoire. On suppose généralement que les tirages sont indépendants et, faute de mieux, on estime cette erreur en utilisant la variance du sondage aléatoire simple de même taille d’échantillon. Rappelons que procéder ainsi ne repose sur aucune règle mathématique rigoureuse !
  • L’erreur d’observation regroupe beaucoup de choses diverses qui ne sont pas vraiment quantifiables, mais qui ont une importance. Par exemple, l’influence de la formulation des questions, la sous-déclaration de votes “honteux”, etc. Notons qu’il y a de fortes chances pour que cette erreur d’observation soit très corrélée entre les instituts de sondage : si vous ne souhaitez pas dévoiler votre vote à un sondeur, je doute que cela change suivant que ledit sondeur travaille pour l’Ifop ou la Sofres.

Ainsi, l’étonnement des auteurs concerne l’erreur aléatoire d’échantillonnage – et c’est bien celle qui est considérée dans leur “test statistique”.

La spécificité française : quotas et redressement

Pour un sondage américain typique, la réflexion fonctionne très bien car l’erreur d’échantillonnage estimée en utilisant la formule du sondage aléatoire simple est en général une sous-estimation de l’erreur d’échantillonnage réelle. L’article original de Nate Silver sur le herding est convainquant à cet égard.

Pour un sondage politique français, c’est beaucoup plus compliqué car les méthodes utilisées (notamment les quotas et l’utilisation intensive de redressements) sont très différentes des méthodes américaines ! La méthode des quotas et le redressement permettent, lorsque les variables mises en jeu (âge, géographie, catégorie socio-professionnelle et vote passé principalement) expliquent correctement le phénomène mesuré (les intentions de vote pour dimanche), de réduire sensiblement l’erreur d’échantillonnage.

De plus, j’ai “l’intuition” que le mode de sélection par quotas et le redressement (qui ne sont en fait pas aléatoire) peuvent eux-mêmes conduire à une corrélation des erreurs d’échantillonnage entre les instituts. J’espère vraiment avoir l’occasion dans des travaux futurs de proposer un modèle pour pouvoir tester cette idée ! La littérature sur les sondages par quotas est très peu développée et on ne peut que le regretter.

Ces deux arguments montrent que la variabilité des sondages “attendue” par les auteurs de l’article de The Economist est peut-être bien plus importante que leur variabilité réelle. Leur “probabilité” estimée que les sondages n’aient pas subi d’intervention est donc à mon avis très largement surestimée, et leur conclusion me semble hâtive.

Autrement dit à propos de leur méthodologie : le fait que peu de sondages sortent des marges d’erreur ne montre pas nécessairement que les sondeurs “trichent”, mais tout simplement… que leurs marges d’erreur sont mal calculées !

Reste… le risque !

Agrégé des estimations d’intentions de vote – Will Jennings and Chris Wlezien, The Economist

Il reste que cette corrélation entre les résultats est à double tranchant. Rien ne garantit que l’erreur totale des sondages français est inférieure à l’erreur totale des sondages américains. En résumé, la méthode française est sans doute plus risquée : il y a des chances que les résultats soient plus précis qu’avec la méthode “américaine”, mais en contrepartie, s’il y a une erreur, tous les sondages seront éloignés de la réalité à la fois ! Etant donné que la course à quatre de cette année est inédite dans l’histoire de la Vème République, rien ne garantit que l’on n’ait pas une grosse surprise dimanche à 20h !

A bientôt pour un post sur les marges d’erreur en sondages politique !

Illustrations : graphiques de l’article de The Economist, par Will Jennings et Chris Wlezien. Je ne possède pas les droits de ces images.

Sampling graphs – MAD-Stat Seminar at Toulouse School of Economics

Tomorrow (march 23rd), I’ll be presenting my work on sampling designs for graph (and particularly extension sampling designs, with an application to Twitter data) at the MAD Stat seminar of the Toulouse School of Economics. Here are my slides:

 

Announcing Icarus v0.3

This weekend I released version 0.3.0 of the Icarus package to CRAN.

Icarus provides tools to help perform calibration on margins, which is a very important method in sampling. One of these days I’ll write a blog post explaining calibration on margins! In the meantime if you want to learn more, you can read our course on calibration (in French) or the original paper of Deville and Sarndal (1992). Shortly said, calibration computes new sampling weights so that the sampling estimates match totals we already know thanks to another source (census, typically).

In the industry, one of the most widely used software for performing calibration on margins is the SAS macro Calmar developed at INSEE. Icarus is designed with the typical Calmar user in mind if s/he whishes to find a direct equivalent in R. The format expected by Icarus for the margins and the variables is directly inspired by Calmar’s (wiki and example here). Icarus also provides the same kind of graphs and stats aimed at helping statisticians understand the quality of their data and estimates (especially on domains), and in general be able to understand and explain the reweighting process.

Example of Icarus in RStudio
Example of Icarus in RStudio

I hope I find soon the time to finish a full well documented article to submit to a journal and set it as a vignette on CRAN. For now, here are the slides (in French, again) I presented at the “colloque francophone sondages” in Gatineau last october: http://nc233.com/icarus.

Kudos to the CRAN team for their amazing work!

A winning strategy at the lottery

tl;dr – It is possible to construct a winning strategy at the lottery by choosing the numbers that other people rarely select. We discuss this and prove it on a small example.

 

There are many things I don’t like with so-called math reasoning and lotteries, and I wanted to write about it for a very long time. So, on the one hand we have the classic scammers who try to sell you the “most probable numbers” (or alternatively the “numbers that are due”). Of course, neither strategy is mathematically valid (because the draws are independent). On the other hand, many “educated” and “rational” people argue that, given that the expected value of a lottery ticket is negative (because the probability of wining a prize at the lottery is very low), smart people should never buy lottery tickets.

Comic by Zach Wiener, http://www.smbc-comics.com
Comic by Zach Wiener, http://www.smbc-comics.com

Now what if we could find a (mathematically correct!) strategy to make the expected value of our ticket positive? The idea is to choose the numbers that other players choose the least often, so that when we win a prize, it will be divided among fewer other players. But will it be enough to make a significant difference?

The example

Let’s consider a lottery where players have to choose 6 numbers out of 19. The total number of players is 10000. The favorite numbers of the players are 1, 2, 3, 4, 5 and the least favorite are 15, 16, 17, 18, 19. They are respectively selected 2 times more often and 2 times less often than the other numbers 6 –  14. The company who runs the lottery decides to give the players back 90 percent of the amount of the tickets (thus ensuring a 10% profit) depending on the number of numbers they have chosen that also are in the right combination:

  • 0 or 1 correct number: 0%
  • 2 correct numbers: 42%, shared with other winners
  • 3 correct numbers: 10%, shared with other winners
  • 4 correct numbers: 3%, shared with other winners
  • 5 correct numbers: 4%, shared with other winners
  • 6 correct numbers (the jackpot): 40%, shared with (the eventual) other winners

Then we compute the expected value for each ticket that was bought. You can find the R code I used on my GitHub page. I plotted the expected gains against an indicator of the rarity of the combination chosen by each player (the harmonic mean of the inclusion probabilities):

 

Expected gains wrt a measure of the frequency of the combination chosen

As we predicted, the expected gains are higher if you chose an “unpopular” combination. But what impresses me most is the order of magnitude of the effect. It is indeed possible to find a combination that yields a positive expected value (points on the left that are above the red line)!

Further work

I have no idea how all this works when we change the parameters of the problem: numbers to choose from (49 in France for example), number of players, choices of the players (inclusion probabilities of the numbers), payoffs, etc. I bet that the shape of the curve remains the same, but I wonder how high the expected value can get for the rarest combinations, and if it is always possible to find a winning strategy. I might try to work on an analytical solution when I find some time because I believe it involves some sampling theory.

Finally, a question to all people who never play the lottery because the expected value is negative, would you start buying tickets now that you know there exists a strategy with positive expected value?

Comic by Zach Wiener, http://www.smbc-comics.com
Comic by Zach Wiener, http://www.smbc-comics.com

PS: Henri pointed out chapter 11 of Jordan Ellenberg’s “How not to be wrong” which deals with interesting mathematical facts about the lottery, including a similar discussion as this post. Be sure to check it out, it’s really great!

[22] L’affaire “Fun Radio”

Les sondages peuvent parfois faire l’actualité sans parler de politique ! Prenons l’exemple de l’affaire qui oppose Fun Radio et l’institut Médiamétrie, qui est chargé de la mesure d’audience sur les chaînes de télé, de radio, et même des sites internet. Un animateur de la matinale de la radio avait demandé à ses auditeurs, dans le cas où ils seraient contactés par Médiamétrie, de déclarer qu’ils n’écoutaient que Fun Radio (et aucune radio), et qu’ils étaient à l’écoute de la station durant toute la journée. Cela a conduit Médiamétrie à retirer momentanément Fun Radio du panel de mesure. Cette décision a eu des conséquences importantes sur les finances de la radio : en effet, la répartition des revenus publicitaires est directement indexée sur ces calculs d’audience. Ainsi, la radio s’est pourvu en justice pour être réintégrée, ce qui sera a priori le cas.

Je ne commenterai pas la décision de justice, n’y connaissant rien, mais j’ai plutôt envie de commenter d’un point de vue de sondeur cette affaire. En effet, si l’on résume, les messages ont eu (potentiellement) trois effets :

  1. Encourager les auditeurs de la matinale à répondre aux enquêteurs de Médiamétrie lorsque ceux-ci les contactent ;
  2. Sur-déclarer un temps d’écoute pour la radio Fun Radio ;
  3. Sous-déclarer un temps d’écoute pour d’autres radios.

À mon sens, ces trois problèmes demandent des solutions différentes ! Je vais laisser le premier de coté, qui me semble le plus intéressant d’un point de vue sondages, pour parler brièvement des deux autres.

Tout d’abord le deuxième : on peut imaginer qu’en utilisant des sources extérieures comme le panel Radio global sur le temps d’écoute moyen de la radio en France, ou des enquêtes type Emploi du Temps de l’INSEE, on puisse repérer des outliers (c’est à dire des personnes qui déclarent des valeurs qui sortent très largement de la moyenne) et les traiter, ou les exclure. En gros, écouter la radio 24h par jour, c’est suspect.

Le troisième point est le plus ardu à corriger, mais on peut faire l’hypothèse (soyons optimistes) que quelqu’un qui est prêt à mentir si un animateur radio le lui demande est un auditeur exclusif de la radio en question, ce qui neutralise l’effet.

Reste donc le premier point. Tout praticien des sondages sait que les individus sélectionnés dans un échantillon ne sont pas tous volontaires pour répondre aux questionnaires, loin de là. Cela crée un biais, qui est étudié et traité en statistiques par des méthodes de “correction de la non-réponse”. On pourrait donc imaginer que ces méthodes servant à prendre en compte la non-réponse pourraient suffire à annuler le biais en question, mais le problème est plus compliqué que cela. Je vais tenter d’expliquer à l’aide d’un exemple : supposons qu’il existe uniquement deux radios, une pour les “jeunes”, et une pour les autres. Dans ce cas, Médiamétrie cherche à savoir combien de personnes écoutent chaque radio. Si 10% des jeunes répondent avant l’effet de l’annonce, Médiamétrie a l’habitude de multiplier par 10 (pour simplifier) le nombre d’auditeurs de Fun Radio : si le nombre de répondants augmente, il suffit de changer un peu le coefficient multiplicatif, mais cela n’aura pas d’effet sur l’écoute de l’autre radio, et les chiffres devraient être globalement les mêmes.

Pourquoi je dis que c’est plus compliqué ? Parce que les méthodes de la correction de la non-réponse reposent sur de l’information auxiliaire, par exemple les informations démographiques. On peut facilement séparer (par exemple via les variables d’âge) l’auditeur moyen de Fun Radio de celui de France Inter, mais ce sera plus compliqué avec NRJ ou une autre station destinée à un même public. Il est d’ailleurs intéressant de noter que c’est NRJ qui a initialement porté réclamation auprès de Médiamétrie. Et donc, la mesure “absolue” de l’audience de Fun Radio (en excluant les points 2 et 3) n’est pas trop mauvaise. Celle de Nostalgie n’est pas impactée non plus, mais celle de NRJ peut l’être énormément. En effet, plus de jeunes répondent, mais les répondants écoutent moins NRJ (car ils sont plutôt auditeurs de Fun Radio), donc l’estimation finale est à la baisse pour cette radio, alors que le comportement de leurs auditeurs n’a pas changé.

Voilà, vous en savez plus sur ceux qui travaillent en secret pour Médiamétrie !

[18] Recensement et constitution américaine

C’est l’avent, sans nul doute la meilleure période pour faire un petit post sur le recensement.

Le principe du recensement

Un recensement consiste à établir un registre de toutes les personnes vivant dans un pays. Le principe en est même inscrit dans l’article 1 de la constitution américaine. Le gouvernement américain est ainsi tenu de dénombrer régulièrement le nombre de ses citoyens, afin notamment d’ajuster le nombre de représentants de chaque Etat dans les différentes institutions démocratiques, entre autres, le sénat, la chambre des représentants et le collège électoral.

Recensement en Alaska en 1940. Source : https://en.wikipedia.org/wiki/United_States_Census#/media/File:1940_Census_-_Fairbanks,_Alaska.jpg
Recensement en Alaska en 1940. By Dwight Hammack, U.S. Bureau of the Census

Recenser toute la population d’un pays est bien entendu long et coûteux. C’est pourquoi historiquement, ces opérations n’étaient conduites qu’à certains moments (une fois tous les 7 ans en moyenne en France aux XIXe et XXe siècles). Un des inconvénients de cette façon de procéder est que le dernier recensement disponible à date peut présenter une information un peu datée ! Si les évolutions démographiques sont rapides, le données d’un recensement effectué plusieurs années auparavant ne refléteront pas la réalité.

Introduction d’une petite partie de sondages

Ainsi, dans le courant des années 2000, quelques instituts nationaux de statistiques ont introduit une petite part de sondage dans leur recensement. L’idée est de ne plus effectuer un dénombrement complètement exhaustif, mais d’effectuer un sondage avec un taux assez fort dans certaines zones géographiques. Ceci à la fois pour gagner en coûts, corriger certains biais de la méthode exhaustive, et surtout permettre d’effectuer le recensement plus souvent, c’est-à-dire de donner aux statisticiens des informations plus récentes !

En France, cette petite part de sondage a été combinée avec un recensement tournant. Les communes de moins de 10000 habitants sont entièrement recensées tous les cinq ans, par roulement, alors que les communes de plus de 10000 habitants ne voient chaque année qu’une fraction (8%) de leur population recensée (plus de détails ici).

L’utilisation du recensement pour la répartition des représentants

Aux Etats-Unis, le Census Bureau fait partie de ces instituts nationaux de statistiques qui ont décidé d’ajouter une petite part de théorie statistique à leur recensement. Mais la cour Suprême semble sceptique quant à l’utilisation de telles méthodes “inexactes”. En 1999, elle a décidé que les résultats du recensement qui auront été obtenus en utilisant la méthode par sondage ne pourraient pas être utilisées pour “l’apportionment“, c’est-à-dire la constitution des institutions démocratiques représentatives.

Le Census Bureau collecte quand même des données par cette méthode car elles sont utiles dans beaucoup de domaines (par exemple cet article très intéressant  sur lequel je reviendrai un de ces jours). Mais elles ne seront pas utilisées pour calculer le nombre de représentants au Sénat, à la chambre ou dans le collège électoral.

Notons que certains statisticiens pensent que le recensement “exhaustif” américain est biaisé en défaveur des minorités, ce qui fait écho aux débats récents sur la constitution du collège électoral.

Le découpage électoral en France

Circonscriptions électorales élections législatives 2012. Source : http://www.lefigaro.fr/politique/2009/07/28/01002-20090728ARTFIG00458-la-nouvelle-carte-electorale-pour-2012-.php
Circonscriptions électorales élections législatives 2012. Source : http://www.lefigaro.fr/politique/2009/07/28/01002-20090728ARTFIG00458-la-nouvelle-carte-electorale-pour-2012-.php

En France, la délimitation des circonscriptions législatives se nomme le découpage électoral. La dernière modification de ces circonscriptions a été effectuée en 2010 en utilisant les données démographiques du recensement de la population 2009. Autrement dit, notre mode de découpage des circonscriptions utilisant cette méthode de recensement serait considéré… inconstitutionnel aux Etats-Unis !

[Sampling] Icarus et calage sur bornes minimales au 9ème colloque francophone sondages

Du 11 au 14 octobre dernier, nous étions à Gatineau (Québec) pour participer au 9ème colloque francophone sur les sondages de la SFdS. Un grand bravo à toute l’équipe organisatrice pour ce contenu scientifique de grande qualité et ce programme social très sympathique !

Nous avons donné les présentations suivantes :

[Sampling] Talk at INSPS – Avignon

I’m in the beautiful city of Avignon for the 3rd ISNPS conference, which is held in the extroardinary Palace of the Popes Convention center. I’ve been invited by Ricardo Cao to give a talk wednesday morning during on sampling methods for big graphs.

[Sampling] Coucher pour réussir ?

Je commence ma semaine en tombant sur un article de LCI qui indique qu’une enquête OpinionWay estime qu’un jeune sur cinq serait prêt à “coucher” pour réussir en entreprise (note : l’info a été en fait reprise dans beaucoup de quotidiens ce lundi matin). On note au passage la magnifique illustration qui montre cinq jeunes salariés … je suppose qu’il faut se demander lequel parmi les cinq est sur le point de coucher pour réussir ?

Essayons d’avoir un regard critique sur ce chiffre annoncé. Souvenons-nous que lorsque l’on fait un sondage, on choisit de n’interroger qu’un petit nombre d’individus, à qui on pose les questions qui nous intéressent. Bien entendu, ce serait trop coûteux d’interroger 66 millions de français au sujet de leur intention de coucher pour réussir (c’est l’intérêt du sondage), mais on paye tout de même un prix : la statistique obtenue aura une certaine imprécision, aussi appelée erreur d’échantillonnage. Essayons d’estimer cette “imprécision”.

Les informations données sur le sondage effectué montrent que l’échantillon a été construit “de façon représentative” (si vous voulez savoir ce que je pense de ce terme, vous pouvez lire cet article) par la méthode des quotas. Cela signifie que les proportions de jeunes salariés de 18-24 ans dans la population et dans l’échantillon sont censées être égales. D’après des statistiques diffusées par Pôle emploi, les 18-24 ans représentent environ 9% du nombre de salariés total. Les 18% de jeunes salariés prêts à coucher pour réussir sont donc dans l’échantillon au nombre de :

\begin{align*}
0.09 \cdot 1060 \approx 95.4
\end{align*}

 

Cette “statistique” ne repose donc que sur les réponses de 95 personnes, et non pas la totalité de l’échantillon (notez qu’il est probable que je surestime le nombre de jeunes salariés de l’échantillon car celui-ci semble construit sur le total de la population et non sur le total de salariés). On peut utiliser cette valeur pour calculer un intervalle de confiance pour la statistique, donné par la formule :

\begin{align*}
\hat{IC} &= \left[ 0.18 \pm 2\cdot \sqrt{\dfrac{0.18 \cdot (1-0.18)}{95}} \right] \\
&\approx [0.10 ; 0.26]
\end{align*}

 

Comme prévu, l’intervalle de confiance est très large : la valeur estimée à 18% est comprise entre 10% et 26% au seuil de confiance de 95%, soit entre “un jeune sur dix” et “un jeune sur quatre”. Et il s’agit uniquement de l’erreur d’échantillonnage ! Les sondages en général sont sujets à beaucoup d’autres sources d’erreurs (voir par exemple le dernier chapitre de ce cours pour plus de précisions). Par exemple, pour cette enquête, le questionnaire était rempli par les individus échantillonnés sur une page web. Le questionnaire n’est pas diffusé ici, mais imaginez que cette question soit la 198ème d’une série de 200, pourrait-on accorder une grande importance aux réponses données par ces 17 individus à cette question ? La formulation de la question peut également influer sur la réponse données par les individus interrogés.

Prenant tout cela en compte, on peut réécrire la version “statistiquement honnête” de l’article de LCI :

lci_9_mai

Finalement c’est peut-être mieux que je ne sois pas journaliste 😉