Eurovision 2018 – prédictions

Aujourd’hui un rapide article pour donner des premières prédictions pour l’Eurovision 2018, avec un modèle très simplifié basé sur les statistiques des vidéos publiées sur Youtube pour l’intégralité des pays participants, en espérant trouver le temps pour l’améliorer dans les prochaines années !

Les données

Nous allons essayer de prédire les résultats (participation à la finale – ce point avait déjà été discuté sur le blog, puis score obtenu) à partir des informations disponibles sur les vidéos Youtube : nombre de vues, nombre de “Like” (pouces vers le haut, qui indiquent que la vidéo a été appréciée) et nombre de “Dislike” (pareil mais vers le bas, qui indiquent que la vidéo n’a pas été appréciée par le spectateur).

Nous récupérons ces informations grâce au package R tuber, qui permet d’aller faire des requêtes par l’API de Youtube et ainsi de récupérer pour chacune des vidéos d’une playlist les informations nécessaires pour le modèle. Nous récupérons alors les données pour les chansons des concours 2016, 2017 et 2018. Ces informations sont ensuite complétées avec le nombre de points obtenus et le rang du classement final pour les finalistes des éditions 2016 et 2017. Les données sont disponibles ici.

Évidemment, ces données ont leurs limites. Je n’ai pas trouvé comment rechercher des informations sur les vidéos Youtube à une autre date, ce qui fait que l’on va utiliser des données après la diffusion des concours 2016 et 2017 pour évaluer un modèle, que l’on appliquera à des données avant le concours pour 2018. Par ailleurs, le système de notation a évolué en 2016, ce qui explique pourquoi on se limite aux données sur les deux dernières années pour notre modèle. Par ailleurs, pour lisser les effets de taille (1 millions de vues en moyenne pour les vidéos 2018 contre 5 millions pour celles de 2016), nous travaillons sur des données standardisées en divisant par la moyenne du nombre de vues, de likes, etc.

Le modèle

Nous travaillons ensuite sur deux problèmes : estimer la probabilité qu’une chanson soit qualifiée en finale, puis estimer le score qu’elle va obtenir, pour évaluer son classement final. En ce qui concerne la probabilité de qualification en finale, nous réalisons une régression logistique. La seule variable qui ressort est le nombre de Dislike, qui influe légèrement négativement la chance d’être qualifié. C’est assez logique : moins la vidéo est appréciée, moins il y a de chances que le pays soit qualifié en finale.

En ce qui concerne le nombre de points obtenus, nous testons deux approches concurrentes :

  • Une régression linéaire sur les variables : dans ce cas, on observe que le nombre de vues ne joue pas significativement, le nombre de Likes de façon très mineure et le nombre de Dislikes très nettement, avec un lien positif : plus il y a de pouces baissés, plus le score est important. Ce résultat atypique peut s’expliquer par le fait que la vidéo ukrainienne en 2016, gagnante, a plus de 40 000 pouces baissés.
  • Un arbre de régression qui permet de séparer à chaque étape la population en deux et d’évaluer un score moyen. Cette méthode est moins efficace pour prédire le score exact, mais elle permet d’identifier les déterminants du score. L’arbre ci-dessous décrit la partition des vidéos :

Cet arbre se lit de la façon suivante :

  • Si l’on a plus de 2,216 fois le nombre de vues moyen des vidéos de l’année, alors le score prédit par la méthode est 425 (les vidéos populaires ont des scores importants). Sinon, on passe à l’étape suivante
  • Si l’on a moins de 89% du nombre de Likes moyen des vidéos de l’année, alors on part dans le sous-arbre encadré en bleu ; si c’est plus, dans celui encadré en vert.
  • L’opération se répète jusqu’à qu’on arrive à un carré en bas de l’arbre, où l’on lit le score prévu

Les résultats

Voici les prédictions obtenues, en utilisant la méthode de régression linéaire pour le score total :

PaysProba d'aller en finaleScore prédit
Israël99%1585
Russie25%393
Espagne100%375
République Tchéque99%210
Bulgarie99%207
Suède94%189
Norvège74%150
France100%140
Grèce97%140
Estonie71%130
Australie75%129
Belgique74%119
Azerbaïdjan83%118
Macédoine67%117
Danemark85%116
Biélorussie78%109
Italie100%106
Malte79%106
Irlande73%106
Lituanie77%102
Arménie62%100
Autriche70%99
Chypre62%95
Serbie42%91
Portugal100%89
Royaume-Uni100%82
Ukraine38%80
Moldavie29%80
Slovénie19%80
Suisse48%77
Allemagne100%76
Finlande31%74
Hongrie28%74
Georgie15%74
Roumanie31%73
Croatie19%67
Pologne34%66
San Marin10%61
Montenegro16%60
Albanie21%57
Pays-Bas15%56
Lettonie16%55
Islande9%51

Le grand gagnant est Israël, ce qui est plus ou moins la prédiction faite par tout le monde : voir ici ou ici. À noter que l’année dernière, l’Italie était grande favorite (et a fini 6ème), donc rien n’est encore fait… Si vous voulez vous faire une idée :

Un résultat plus étonnant concerne la Russie. Elle est classée deuxième par notre modèle, mais avec une faible chance d’être qualifiée en finale. Cela semble venir d’un très haut nombre de pouces baissés sur la vidéo, qui influencent énormément notre prédiction. La Russie est placée 25ème par les bookmakers, donc à voir si notre modèle a détecté quelque chose ou s’il s’agit d’un cas de surapprentissage. Pareil, pour se faire un avis :

Et enfin, soyons chauvins ! Nous serions dans le top 10 avec Mercy. C’est d’ailleurs cohérent avec les estimations des bookmakers. Tout est donc encore possible 😉

Chance et talent dans le sport

(Ce petit article est une reprise d’un fil twitter fait à l’occasion du Final Four de la NCAA)

Aujourd’hui on propose de prendre un peu de temps pour discuter des notions de “chance” (luck) et de “talent” (skill) dans le domaine du sport, en s’inspirant d’arguments exposés dans The Success Equation: Untangling Skill and Luck in Business, Sports, and Investing, sorti en 2012. La question qui se pose est la suivante : dans les résultats d’une équipe sportive ou d’un athlète, qu’est-ce qui vient de l’habileté et qu’est-ce qui relève uniquement de la chance ? Même si l’on faisait l’hypothèse que le déterminant principal d’un résultat est le talent de l’athlète, certaines sous-performances peuvent arriver.

C’est un sujet assez classique, qui est développé dans la plupart des études statistiques sur le sport. Pour ceux qui préfèrent le format vidéo, voici un résumé rapide de ce qu’explique le livre :

Mathématiquement, on considère que le skill et la chance sont deux variables indépendantes. On peut donc écrire une équation très simple sur leur variance :

Var(observations) = Var(skill) + Var(chance)

Cela nous donne donc une façon d’estimer la contribution du skill dans les résultats, c’est à dire une idée de l’importance du talent de l’athlète :

Var(skill) = Var(observations) – Var(chance)

Plus ce terme est important, plus les résultats obtenus proviennent du fait que le sport récompense les joueurs qui ont du talent. Dans un jeu complètement aléatoire (pile ou face…), c’est uniquement la chance qui amène au résultat final. On imagine alors que chaque sport va plus ou moins s’éloigner de ce modèle.

Nous avions discuté de cette question par rapport au badminton et au tennis ; on constatait alors que, grâce à la règle de l’écart des deux points, il y avait une plus grande stabilité des victoires (et donc une plus faible part de chance) au tennis qu’au badminton. Une même question se posait sur le tir à l’arc, avec le changement des règles qui permet plus facilement de rattraper une flèche ratée.

Comment faire pour estimer cette contribution ? Pour le premier terme, Var(observations), c’est facile. On considère les résultats (d’une saison par exemple) comme une variable aléatoire et on calcule sa variance. On constate que certains sports sont plus variables que d’autres, par exemple le basket par rapport au hockey :

Le seconde terme, Var(chance), est un peu plus complexe à estimer. Dans son son livre, Mauboussin prend chaque match comme une expérience de Bernoulli (avec une probabilité de victoire qui correspond au taux de victoire dans la saison). Il obtient donc, par sport, un pourcentage d’explication du skill dans le résultat final. Par exemple, pour la NBA il obtient 88% et pour la NHL 47%.

Une bonne part de la variance s’explique en fait par le nombre de matches joués, qui correspond dans la logique à la “taille d’échantillon”. La NFL (16 matches / saison) est donc logiquement plus aléatoire que la NBA (82 matches / saison) sur l’axe skill / chance représenté en haut de l’article. On peut aussi appliquer le même concept en considérant chaque “action” comme une expérience aléatoire. Par exemple, chaque possession au basket, comme une chance de marquer avec une certaine probabilité. C’est pour cela l’on s’attendait à ce que l’underdog Loyola-Chicago essaye de jouer le plus lentement possible.

L’idée derrière cette stratégie est que moins de possessions implique plus de variance et donc moins de chances de l’emporter pour le favori ; en effet, plus l’on joue, plus l’aléatoire doit s’équilibrer et donc le talent va s’imposer. La validité de cette stratégie est disputée : certaines analyses statistiques ont montré que les chances de victoires des équipes mal classées (underdogs) contre des équipes réputées bien meilleures n’était pas modifiées par le rythme du match.

Pour conclure, le même genre d’analyse a été appliqué récemment (avec plus ou moins de succès) à l’esport. Yauheni Hladki a présenté à la GDC une analyse dont le résultat situe tous les jeux (oui, tous, même Hearthstone) à la droite des échecs sur l’axe skill / chance. Ce qui signifierait que la chance aurait moins d’impact sur le résultat que dans la plupart des sports. En d’autres termes, qu’une équipe mal classée de CS:GO n’aurait que des chances infimes de remporter un match contre une équipe du top mondial… pas terrible pour le suspense si cela était vrai !

La “clé” derrière ce résultat est que l’auteur considère chaque action effectuée en esport comme une expérience aléatoire. Cela inclut par exemple chacun des tirs effectués dans une partie de CS:GO ! La taille d’échantillon “équivalent” considérée est énorme (la variance obtenue est donc très faible) et c’est ce qui le conduit à placer tous les esports au même endroit sur l’axe. À vous de juger de la pertinence de cette méthode !

 

On a tous en nous quelque chose…

Un petit article pour réagir à l’actualité très récente de ces derniers jours, c’est à dire la mort de Johnny Hallyday ; si vous n’êtes pas au courant, c’est que vous vivez dans une grotte (voir ici par exemple). Cet immense chanteur a fait une très grande carrière et fait partie du patrimoine musical français. Depuis son décès, les radios et les chaînes de télévision diffusent plus ou moins en boucle ses titres, en hommage. C’est d’ailleurs ce qui nous amène à la question du jour : combien de temps cela prendrait à diffuser la totalité de l’oeuvre de Johnny à la radio ?

Pour répondre à cette question, nous allons utiliser l’article Wikipedia sur sa discographie, très bien fourni. Il faut évidemment se limiter à un certain nombre d’albums : on va choisir les albums studios, en excluant ceux faits exclusivement pour l’étranger, qui ne seraient pas diffusés sur une radio française. Le jeu de données est disponible ici, si vous souhaitez l’utiliser.

Le résultat, sans plus attendre, est que la cinquantaine d’albums studio de Johnny demanderait 36 heures, 2 minutes et 22 secondes à être diffusée ! Soit, en sachant que sa mort a eu lieu aux environs de 2h du matin le mercredi 6 décembre 2017, cela veut dire que si une radio l’avait appris directement, elle aurait pu diffuser en boucle sans jamais se répéter des titres du chanteur jusqu’à jeudi 7 à 14h. Et encore, on ne compte pas les albums live !

On peut également utiliser ce jeu de données pour regarder la durée moyenne des chansons. Plusieurs études ont montré que la longueur des chansons a évolué dans les dernières décennies, avec un minimum dans les années 60 et un maximum dans les années 90. Un graphe animé est disponible ici :

On peut faire le même graphe pour les chansons de notre idole des jeunes, et on se rend compte que l’on retrouve quasiment la même courbe ! Il était donc bien un reflet de son époque.

Et enfin, est-ce que vous saviez que Johnny et Pasteur étaient morts dans la même ville ? Peut-être une idée pour un prochain article, d’ailleurs…

Reports de voix à la présidentielle 2017

La question du report des voix entre les deux tours des élections, souvent primordiale pour les politologues et les journalistes politiques, s’est posée de façon particulièrement cruciale pour l’élection présidentielle 2017. En effet, les deux candidats qualifiés étaient issues de nouvelles formations, ou du moins de formations qui n’ont pas l’habitude de participer au second tour de la présidentielle (une fois pour le Front National, et jamais pour En Marche !). Nous allons reprendre la même façon d’aborder cette question que ce que nous avions fait pour l’élection présidentielle de 2012, en décembre dernier.

Les analyses de “report de voix” utilisent des données de sondage mais nous allons reprendre ici l’approche basée sur l’analyse de l’évolution du vote pour chacune des villes entre les deux tours de l’élection. Les données relatives au vote pour chacune des villes sont disponibles ici (premier tour) et ici (second tour).

Nous réalisont alors un modèle de régression linéaire entre les deux tours, pour évaluer quelle partie des votes alloués à chaque candidat au premier tour se reporte sur l’un des deux challengers, ou n’est pas exprimée (abstentions, blancs). Les résultats sont les suivants :

Macron Le Pen
Le Pen < 1 % 112 %
Macron 116 % < 1 %
Fillon 58 % 19 %
Melenchon 48 % 10 %
Dupont-Aignan 39 % 36 %
Hamon 95 % < 1 %
Asselineau 22 % 32%
Arthaud 51% 41%
Poutou 56 % 13 %
Cheminade 44 % 21 %
Lassalle 48 % 23 %

ou sous forme de graphique :

Comme nous l’avions déjà indiqué la dernière fois, il ne s’agit que d’un petit modèle sans grande prétention, et cela ne veut pas dire que 23% des électeurs de Jean Lassalle ont voté pour Martine Le Pen au second tour, mais on peut en déduire quelques remarques :

  • La somme des pourcentages donne une idée des électeurs qui n’ont pas souhaité participer au second tour. On voit que les électeurs de Asselineau puis de Mélenchon sont ceux qui ont le plus souvent voté blanc ou qui se sont abstenus au second tour ;
  • Inversement, pour Macron et Le Pen on observe un score estimé supérieur à 100%, cela signifierait que la mobilisation des électeurs ayant ces deux candidats préférés au premier tour se sont plus mobilisés au second ;
  • Les électeurs insoumis qui ont souhaité exprimer un vote en faveur d’un des deux candidats ont majoritairement choisi Macron ;
  • L’accord électoral entre Marine le Pen et Nicolas Dupont-Aignan n’aurait pas convaincu son électorat, qui se partagerait en parts égales pour les deux candidats ;
  • Le vote Hamon s’est quasiment à 100 % reporté sur le vote Macron ; ce n’est pas le cas de celui Fillon, qui s’est reporté de façon non négligeable pour Marine le Pen, et qui a entraîné plus d’abstention ou de vote blanc.

En comparaison, les reports de voix à la présidentielle 2012 étaient les suivants :

Comment annoncer les résultats des élections à 20h ?

Il y a une semaine quasiment jour pour jour, dimanche 23 avril à 20h, les résultats du premier tour de l’élection présidentielle ont été annoncés sur les plateaux des grandes chaînes, TF1 ou France Télévisions par exemple. Pour donner ce résultat, il n’est pas envisageable d’attendre les remontées officielles, qui n’arrivent que tard dans la nuit, une fois que tous les bureaux ont été dépouillés. D’autre part, il ne serait pas très pertinent de récupérer les résultats au fur et à mesure des remontées des bureaux dépouillés, car on sait que les premiers sont souvent ceux des communes rurales, qui ne votent pas du tout comme les autres. Il est donc nécessaire de procéder par estimations. Pour cela, les grands instituts de sondage partenaires des soirées électorales de chacune des chaînes sélectionnent certains bureaux de vote et remontent l’information sur les premiers bulletins dépouillés : cela suffit à obtenir une précision suffisante, couplée à certains modèles de prédiction sur les caractéristiques des bureaux (à ce sujet, difficile d’être plus précis, les instituts gardant jalousement leurs méthodes secrètes !).

Nous allons ici nous intéresser à un moyen de bien sélectionner les bureaux de vote dans lequel faire remonter l’information, en utilisant ce que l’on appelle le sondage équilibré. Le sondage équilibré (voir par exemple ici, attention technique) revient à choisir au hasard un échantillon qui respecte certaines conditions de structure (ce qu’on pourrait appeler, de façon abusive, un échantillon représentatif). Par exemple, lorsque l’on échantillonne des individus, on peut souhaiter avoir le bon nombre d’hommes et de vieux, de jeunes et de plus âgés, etc. Attention ! On ne parle pas ici de méthode de quotas, mais bien d’un sondage aléatoire où on tire certains individus au hasard parmi une population connue mais en faisant en sorte de respecter la structure voulue. Les méthodes de sondage équilibré sont assez complexes, mais elles sont très étudiées en sondage.

Ici, la population, ce sont les bureaux de vote pour l’élection présidentielle 2017 (données ici). Nous allons essayer d’équilibrer notre échantillon sur les votes à l’élection présidentielle de 2012, c’est à dire les choisir de telle sorte que si on avait choisi ces bureaux en 2012, on aurait eu le bon score (ou quasiment le bon score) pour les principaux candidats. L’idée est que le vote en 2017 et celui en 2012 sont assez liés : c’est d’ailleurs une des raisons qui fait que les sondages français sont précis mais souvent proches les uns des autres. Nous allons donc sélectionner 100 bureaux de vote (sur les 70 000 environ) de cette façon, en utilisant la méthode dite du Cube (présente dans le package BalancedSampling de R). Si l’on compare cette méthode par rapport à une sélection complètement au hasard des bureaux, on obtient les résultats suivants en termes d’erreur possible autour de la vraie valeur :

Score Macron Score Lepen
Sondage équilibré ± 1,10% ± 1,51%
Sondage simple ± 1,52% ± 2,24%

On gagne donc bien à mobiliser l’information de la précédente élection par équilibrage. Cependant, on peut aussi l’utiliser dans un second temps, par exemple par des redressements sur les résultats obtenus. De plus, dans mes simulations, j’ai négligé plusieurs paramètres :

  • Certains bureaux n’existaient pas en 2012, ou ont été modifiés entre 2012 et 2017. Il faudrait leur attribuer une valeur “logique” pour 2012.
  • On ne peut disposer que des 200 premiers bulletins de vote sur les bureaux ; cela ne devrait entraîner cependant qu’une différence minime sur la précision avec laquelle on peut annoncer les résultats à 20h
  • Enfin, certains bureaux ne ferment qu’à 20h. Il faudrait donc se limiter à des bureaux qui ne sont pas dans les grandes villes.

Dans tous les cas, cette approche semble intéressante ! On voit que certains instituts ont eu des prédictions assez éloignées du score final (par exemple la prédiction sur TF1, l’image tout en haut de l’article), et cette méthode pourrait permettre de limiter ces erreurs.

Villes et villages fleuris

En France, la tradition veut que l’on décore les parcs, rond-points et les rues des villes et des villages avec des fleurs. Une autre tradition très française est le concours et la notation, et ce domaine n’y a pas échappé. En effet, le Conseil national des Villes et Villages Fleuris décerne régulièrement des “fleurs” aux différentes communes françaises, suivant la qualité de leurs décorations et de leurs jardins. Ce site donne la liste des villes récompensées. Or, ici, nous aimons beaucoup les données relatives aux villes de France : voir par exemple ici ou ici. Quels sont les déterminants d’une “fleur” ? Comment faire pour en obtenir plus ? Essayons de voir ce que la statistique peut nous apprendre sur le sujet.

Premiers résultats

Nous allons mobiliser d’autres informations sur les communes :

  • Le nombre d’habitants
  • Le nombre d’hôtels présents sur la commune (disponible ici)
  • Le nombre de lits présents dans la commune (disponible au même endroit que précédemment)
  • Le vote politique au second tour de la présidentielle 2012 (disponible ici sur data.gouv)

On récupère donc les informations présentes sur le site des Villes et Villages Fleuris pour connaître le nombre de fleurs associé à chaque ville. C’est 0 pour les villes qui ne sont pas dans la liste du site, et de 1 à 4 pour les autres. Nous allons ensuite réaliser une régression linéaire sur cette variable à partir des autres informations. Le choix de la régression linéaire a été fait car le caractère ordonné, c’est à dire que 2 fleurs soient supérieures à une seule, est important dans ce contexte. Les résultats obtenus sont les suivants :

Variable Coefficient Significatif
Population (en milliers) 0.013 Oui
Nombre d’hôtels 0.036 Oui
Nombre de lits ~ 0 Non
% de votes pour Sarkozy (2012) 0.001 Oui

On voit ainsi que la population, le nombre d’hôtels et le pourcentage de personnes qui ont voté pour Nicolas Sarkozy, le candidat de la droite à l’élection présidentielle en 2012, impliquent un nombre plus important de “fleurs” sur le classement de l’association. On peut en déduire que les villages qui ont tendance à accueillir des touristes décorent plus leurs jardins. Plus marginalement, les villes plus peuplées ou plus conservatrices obtiennent plus de fleurs. Ce résultat nous rappelle les résultats liés aux noms des rues, par exemple la Rue des Fleurs qui est plus marquée à droite.

Répartition géographique

Une autre question qu’on peut se poser est celle de la répartition géographique de ces communes. On peut s’intéresser à leur répartition par département ou par région, mais nous allons plutôt nous intéresser à une autre question, celle de l’autocorrélation spatiale. L’idée est d’étudier l’influence du voisinage entre deux communes : vont-elles avoir le même score en termes de “fleurs” ? Ou est-ce que ces communes sont réparties un peu aléatoirement sur le territoire ? (voir par exemple ici, pour plus d’informations).

Regardons par exemple la carte de Provence-Alpes-Côte d’Azur :

Sur cette carte, les villes et les villages sont en vert lorsqu’ils ont été récompensés, avec une teinte de plus en plus marquée lorsqu’ils ont plusieurs “fleurs”. On remarque que des groupes de communes, par exemple autour de Marseille ou d’Antibes, ont toutes eu des fleurs. Cela pourrait être un effet d’entraînement, par exemple des maires voisins connaissent mieux ce système lorsque leur voisin y a participé.

Avancé – Cette hypothèse peut se vérifier mathématiquement : on peut calculer des indicateurs de “corrélation spatiale”, et donc de regroupements de valeurs similaires, comme par exemple l’Indice de Moran. On trouve un résultat strictement positif, ce qui s’interprète bien de cette façon là.

Prénoms au concours d’internat de médecine

Aujourd’hui, un petit article dans la lignée de la sociologie des prénoms, qu’on retrouve fréquemment associée avec les résultats du bac (voir ici par exemple pour un article de Rue89, ou ici pour le site originel). Nous allons nous intéresser aux résultats des ECN, les épreuves classantes nationales des études de médecine qui permettent de choisir les spécialités d’internat. Ils sont disponible sur Legifrance, à ce lien pour ceux de l’année 2016.

Nous allons réaliser un nuage de points sur ces prénoms : en ordonnée, on retrouve la fréquence des noms parmi la liste des 8000 et quelques admis(es), et abscisse, le rang moyen obtenu par les porteurs de ce prénom. On se limite aux prénoms les plus fréquents (plus de 10 inscrits). Voici les résultats obtenus (cliquer pour une version zoomée) :

On peut comparer cette image avec celle des résultats du bac 2015 :

On retrouve certes les mêmes noms parmi les plus fréquents (Marie, Camille, Thomas…) mais la structure dans les prénoms ne semble pas être la même ! Cela peut s’expliquer par un échantillon bien plus faible, et par des effets de sélection à d’autres niveaux dans les études de médecine.

EDIT 07/03 : Pour répondre au commentaire de Baptiste Coulmont, voici le graphe avec les rangs passés au logarithme. On voit effectivement que ce n’est pas exactement les mêmes résultats ; en particulier, il y a plus de noms de garçons qui ressortent dans les bonnes places.

[22] L’affaire “Fun Radio”

Les sondages peuvent parfois faire l’actualité sans parler de politique ! Prenons l’exemple de l’affaire qui oppose Fun Radio et l’institut Médiamétrie, qui est chargé de la mesure d’audience sur les chaînes de télé, de radio, et même des sites internet. Un animateur de la matinale de la radio avait demandé à ses auditeurs, dans le cas où ils seraient contactés par Médiamétrie, de déclarer qu’ils n’écoutaient que Fun Radio (et aucune radio), et qu’ils étaient à l’écoute de la station durant toute la journée. Cela a conduit Médiamétrie à retirer momentanément Fun Radio du panel de mesure. Cette décision a eu des conséquences importantes sur les finances de la radio : en effet, la répartition des revenus publicitaires est directement indexée sur ces calculs d’audience. Ainsi, la radio s’est pourvu en justice pour être réintégrée, ce qui sera a priori le cas.

Je ne commenterai pas la décision de justice, n’y connaissant rien, mais j’ai plutôt envie de commenter d’un point de vue de sondeur cette affaire. En effet, si l’on résume, les messages ont eu (potentiellement) trois effets :

  1. Encourager les auditeurs de la matinale à répondre aux enquêteurs de Médiamétrie lorsque ceux-ci les contactent ;
  2. Sur-déclarer un temps d’écoute pour la radio Fun Radio ;
  3. Sous-déclarer un temps d’écoute pour d’autres radios.

À mon sens, ces trois problèmes demandent des solutions différentes ! Je vais laisser le premier de coté, qui me semble le plus intéressant d’un point de vue sondages, pour parler brièvement des deux autres.

Tout d’abord le deuxième : on peut imaginer qu’en utilisant des sources extérieures comme le panel Radio global sur le temps d’écoute moyen de la radio en France, ou des enquêtes type Emploi du Temps de l’INSEE, on puisse repérer des outliers (c’est à dire des personnes qui déclarent des valeurs qui sortent très largement de la moyenne) et les traiter, ou les exclure. En gros, écouter la radio 24h par jour, c’est suspect.

Le troisième point est le plus ardu à corriger, mais on peut faire l’hypothèse (soyons optimistes) que quelqu’un qui est prêt à mentir si un animateur radio le lui demande est un auditeur exclusif de la radio en question, ce qui neutralise l’effet.

Reste donc le premier point. Tout praticien des sondages sait que les individus sélectionnés dans un échantillon ne sont pas tous volontaires pour répondre aux questionnaires, loin de là. Cela crée un biais, qui est étudié et traité en statistiques par des méthodes de “correction de la non-réponse”. On pourrait donc imaginer que ces méthodes servant à prendre en compte la non-réponse pourraient suffire à annuler le biais en question, mais le problème est plus compliqué que cela. Je vais tenter d’expliquer à l’aide d’un exemple : supposons qu’il existe uniquement deux radios, une pour les “jeunes”, et une pour les autres. Dans ce cas, Médiamétrie cherche à savoir combien de personnes écoutent chaque radio. Si 10% des jeunes répondent avant l’effet de l’annonce, Médiamétrie a l’habitude de multiplier par 10 (pour simplifier) le nombre d’auditeurs de Fun Radio : si le nombre de répondants augmente, il suffit de changer un peu le coefficient multiplicatif, mais cela n’aura pas d’effet sur l’écoute de l’autre radio, et les chiffres devraient être globalement les mêmes.

Pourquoi je dis que c’est plus compliqué ? Parce que les méthodes de la correction de la non-réponse reposent sur de l’information auxiliaire, par exemple les informations démographiques. On peut facilement séparer (par exemple via les variables d’âge) l’auditeur moyen de Fun Radio de celui de France Inter, mais ce sera plus compliqué avec NRJ ou une autre station destinée à un même public. Il est d’ailleurs intéressant de noter que c’est NRJ qui a initialement porté réclamation auprès de Médiamétrie. Et donc, la mesure “absolue” de l’audience de Fun Radio (en excluant les points 2 et 3) n’est pas trop mauvaise. Celle de Nostalgie n’est pas impactée non plus, mais celle de NRJ peut l’être énormément. En effet, plus de jeunes répondent, mais les répondants écoutent moins NRJ (car ils sont plutôt auditeurs de Fun Radio), donc l’estimation finale est à la baisse pour cette radio, alors que le comportement de leurs auditeurs n’a pas changé.

Voilà, vous en savez plus sur ceux qui travaillent en secret pour Médiamétrie !

[21] Lettres internationales

Reprenons la même logique que dans l’article du 16 décembre : quelle lettre a le plus d’habitants dans le Monde ? Ce coup-ci, on va se limiter au nom des pays (encore que ce serait intéressant de reproduire l’idée sur les villes, mais les données seraient difficiles à trouver : peut-être une prochaine fois !). Pour cela, on utilise les données disponibles ici, on normalise les noms des pays en retirant tout ce qui est entre parenthèses et précédé d’une virgule (décision totalement subjective, mais ce n’est pas une science exacte). Les noms des pays sont ici en Anglais : c’est la norme internationale après tout.

Les résultats sont les suivants :

Les lettres des deux pays les plus peuplés ont été colorées en bleu pour la Chine, en jaune pour l’Inde, et en vert pour les trois lettres que les pays ont en commun (encore une fois, en anglais). On remarque que ces trois lettres, I, N et A, sont les trois plus fréquentes : est-ce que c’est dû à leur appartenance à ces deux pays, ou est-ce que c’est le fait qu’elles soient fréquentes qui fait qu’elles se retrouvent dans les deux noms ?

Pour rappel, les résultats obtenus sur les villes de France sont les suivants :

On voit bien que la répartition n’est pas la même : E, R, S par exemple sont bien moins fréquentes au niveau mondial qu’au niveau français.

[17] Avenue, Rue ou Boulevard Jean Jaurès ?

Petit retour dans le monde de l’odonymie, après l’article de mercredi dernier, et celui plus ancien où nous vous proposions de regarder de quelle couleur politique était votre rue !

Nous allons nous intéresser aux types de voie qui sont associés aux différentes personnalités. Pour cela, nous avons sélectionné les 20 personnalités qui ressortent le plus dans les noms de voirie en France, et nous avons compté pour chaque type de voie (rue, avenue, allée, etc.) avec quelle fréquence ce nom était présent. Les résultats sont résumés par le tableau suivant, coloré à l’aide d’Excel :

On remarque plusieurs résultats intéressants :

  • Ce sont les avenues qui sont les plus fréquentes, en tout cas celles relatives à ces personnalités. Cela peut s’expliquer facilement : ce sont souvent de grandes artères et il est classique de les nommer en honneur de personnalités très célèbres.
  • Les rues et places sont très souvent associées à des personnalités militaires ou politiques, surtout le Général de Gaulle et dans une moindre mesure Clemenceau et le Général Leclerc.
  • À l’inverse, les impasses et les allées sont plus souvent associés à des personnalités du monde littéraire ou artistique, comme Émile Zola, Georges Brassens ou Jean de la Fontaine.